The inhibitory effect of Ukrainian honey on probiotic bacteria
DOI:
https://doi.org/10.5219/1721Keywords:
bee, bee family, honey, microbiota, safety, Bacillus subtilis, Bacillus licheniformisAbstract
Honey is used in the food industry as a natural sweetener and has therapeutic effects on the human body. Obtaining quality honey involves using organic preventive and treatment agents in beekeeping. The most common of these agents are probiotic supplements. This research aimed to study honey’s interaction with an inhibitory effect on the growth of microorganisms from the probiotic supplement Immunobacterin-D under laboratory and experimental field conditions. At the first stage of the research, we assessed the effects of ten honey varieties (buckwheat, sunflower, meadow and forest plants, linden) on
B. subtilis and B. licheniformis from the dry probiotic supplement. The honey-containing nutrient media had an inhibitory effect on the growth of B. subtilis colonies. After 24 hours of cultivation under aerobic conditions, the concentration of B. subtilis decreased, on average, from 5×1012 colony-forming units in 1 g to 3.2×104 and 2.1×105 CFU/g in samples with monofloral and polyfloral honey, respectively. These results emphasize the need for further research on the symbiotic role of microflora in the stability of the microbiota of the hive and bee colony ecosystem. The next stage of the study investigated the probiotic effect on bee colonies in the field. Observations were made on the sanitary conditions of the hives and the behaviour of bees at the Petrodolyna demo apiary. No differences were found at the macro hive-bee colony ecosystem level between control bee colonies (n = 5) and the experimental ones (n = 5) that had received carbohydrate feeding with added probiotics. This confirms the inhibitory effect of honey on the development of bacteria, which eliminates the risk of uncontrolled growth of B. subtilis and B. licheniformis strain colonies inside the hive and the bacteria getting into bee products. The probiotic had positive effects, increasing the live weight of worker bees by 9.15% by the end of the apiary season compared to the control. This can improve the viability of the bees during wintering. At the last stage of the research, the honey obtained from the experimental colonies was checked for the spores of B. subtilis and B. licheniformis using melissopalynology.
Downloads
Metrics
References
Adamchuk, L. O. (2020). Improvement of the method of botanical identification of honey. In Food Science and Technology (Vol. 14, Issue 4, pp. 31–42). Odessa National Academy of Food Technologies. https://doi.org/10.15673/fst.v14i4.1895 DOI: https://doi.org/10.15673/fst.v14i4.1895
Bonerba, E., Panseri, S., Arioli, F., Nobile, M., Terio, V., Di Cesare, F., Tantillo, G., & Maria Chiesa, L. (2021). Determination of antibiotic residues in honey in relation to different potential sources and relevance for food inspection. In Food Chemistry (Vol. 334, pp. 127575). Elsevier BV. https://doi.org/10.1016/j.foodchem.2020.127575 DOI: https://doi.org/10.1016/j.foodchem.2020.127575
Olmos, J. (2014). Bacillus subtilis A Potential Probiotic Bacterium to Formulate Functional Feeds for Aquaculture. In Journal of Microbial & Biochemical Technology (Vol. 06, Issue 7, pp. 361-365). OMICS Publishing Group. https://doi.org/10.4172/1948-5948.1000169 DOI: https://doi.org/10.4172/1948-5948.1000169
Nayak, S. K. (2020). Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis. In Reviews in Aquaculture (Vol. 13, Issue 2, pp. 862–906). Wiley. https://doi.org/10.1111/raq.12503 DOI: https://doi.org/10.1111/raq.12503
Sandvang, D., Styrishave, T. (2018) Bacillus subtilis strains improving animal performance parameters. (Patent no. WO 2018/167171) IP World Intellectual Property Organization. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018167171
Lin, K.-H., & Yu, Y.-H. (2020). Evaluation of Bacillus licheniformis-Fermented Feed Additive as an Antibiotic Substitute: Effect on the Growth Performance, Diarrhea Incidence, and Cecal Microbiota in Weaning Piglets. In Animals (Vol. 10, Issue 9, pp. 1649). MDPI AG. https://doi.org/10.3390/ani10091649 DOI: https://doi.org/10.3390/ani10091649
Leonard, S. P., Powell, J. E., Perutka, J., Geng, P., Heckmann, L. C., Horak, R. D., Davies, B. W., Ellington, A. D., Barrick, J. E., & Moran, N. A. (2020). Engineered symbionts activate honey bee immunity and limit pathogens. In Science (Vol. 367, Issue 6477, pp. 573–576). American Association for the Advancement of Science (AAAS).https://doi.org/10.1126/science.aax9039 DOI: https://doi.org/10.1126/science.aax9039
Grossar, D., Kilchenmann, V., Forsgren, E., Charrière, J.-D., Gauthier, L., Chapuisat, M., & Dietemann, V. (2020). Putative determinants of virulence in Melissococcus plutonius, the bacterial agent causing European foulbrood in honey bees. In Virulence (Vol. 11, Issue 1, pp. 554–567). Informa UK Limited. https://doi.org/10.1080/21505594.2020.1768338 DOI: https://doi.org/10.1080/21505594.2020.1768338
Daisley, B. A., Pitek, A. P., Chmiel, J. A., Al, K. F., Chernyshova, A. M., Faragalla, K. M., Burton, J. P., Thompson, G. J., & Reid, G. (2019). Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. In The ISME Journal (Vol. 14, Issue 2, pp. 476–491). Springer Science and Business Media LLC. https://doi.org/10.1038/s41396-019-0541-6 DOI: https://doi.org/10.1038/s41396-019-0541-6
Mathialagan, M., Thangaraj Edward, Y. S. J., David, P. M. M., Senthilkumar, M., Srinivasan, M. R., & Mohankumar, S. (2018). Isolation, Characterization and Identification of Probiotic Lactic Acid Bacteria (LAB) from Honey Bees. In International Journal of Current Microbiology and Applied Sciences (Vol. 7, Issue 4, pp. 894–906). Excellent Publishers. https://doi.org/10.20546/ijcmas.2018.704.096 DOI: https://doi.org/10.20546/ijcmas.2018.704.096
Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2019). Bacillusspecies in soil as a natural resource for plant health and nutrition. In Journal of Applied Microbiology (Vol. 128, Issue 6, pp. 1583–1594). Wiley. https://doi.org/10.1111/jam.14506 DOI: https://doi.org/10.1111/jam.14506
Pajor, M., Worobo, R., Milewski, S., & Szweda, P. (2018). The Antimicrobial Potential of Bacteria Isolated from Honey Samples Produced in the Apiaries Located in Pomeranian Voivodeship in Northern Poland. In International Journal of Environmental Research and Public Health (Vol. 15, Issue 9, pp. 2002). MDPI AG. https://doi.org/10.3390/ijerph15092002 DOI: https://doi.org/10.3390/ijerph15092002
Alippi, A. M., & Abrahamovich, E. (2019). HiCrome Bacillus agar for presumptive identification of Bacillus and related species isolated from honey samples. In International Journal of Food Microbiology (Vol. 305, pp. 108245). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2019.108245 DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108245
Chen, Y. C. & Yu, Y. H. (2020). Bacillus licheniformis-fermented products improve growth performance and the fecal microbiota community in broilers. In Poultry Science (Vol. 99, Issue 3, pp. 1432–1443). Elsevier BV. https://doi.org/10.1016/j.psj.2019.10.061 DOI: https://doi.org/10.1016/j.psj.2019.10.061
Rybachuk, Zh. V., Shkromada, O. I., Predko, A. V., & Dudchenko, Y. A. (2020). Influence of probiotics “Immunobacterin-D” on biocenoses and development of the gastrointestinal tract of calves. In Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies (Vol. 22, Issue 98, pp. 22–27). Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv. https://doi.org/10.32718/nvlvet9804 DOI: https://doi.org/10.32718/nvlvet9804
Lytvynenko, V., Lytvynenko, S., Verheles, О., & Facuk, R. (2020). Productivity of bovine animals with feeding of feed supplement Immunobacterin-D with Saccharomyces cerevisiae. In Naukovì dopovìdì Nacìonalʹnogo unìversitetu bìoresursiv ì prirodokoristuvannâ Ukraïni (Issue 4(86)). National University of Life and Environmental Sciences of Ukraine. http://dx.doi.org/10.31548/dopovidi2020.04.018 (in Ukrainian) DOI: https://doi.org/10.31548/dopovidi2020.04.018
DSTU 4497:2005, 2007. Med naturalnyi. Tekhnichni umovy (Natural honey. Technical requirements). Derzhavni standarty Ukrainy (National Standards of Ukraine). (In Ukrainian).
GOST 20264.4-89. 1990. Preparatyi fermentnyie. Metodyi opredeleniya amiloliticheskoy aktivnosti (Enzyme preparations. Methods for determining amylolytic activity). Mezhgosudarstvennyiy Standart (Interstate Standard). (In Russian).
GOST 10444.15-94, 1996. Produktyi pischevyie. Metodyi opredeleniya kolichestva mezofilnyih aerobnyih i fakultativno-anaerobnyih mikroorganizmov (Food products. Methods for determining the number of mesophilic aerobic and facultative anaerobic microorganisms). (In Russian).
Adamchuk, L., Sukhenko, V., Akulonok, O., Bilotserkivets, T., Vyshniak, V., Lisohurska, D., Lisohurska, O., Slobodyanyuk, N., Shanina, O., & Galyasnyj, I. (2020). Methods for determining the botanical origin of honey. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 483–493). HACCP Consulting. https://doi.org/10.5219/1386 DOI: https://doi.org/10.5219/1386
Von Der Ohe, W., Persano Oddo, L., Piana, M. L., Morlot, M., & Martin, P. (2004). Harmonized methods of melissopalynology. In Apidologie (Vol. 35, Issue Suppl. 1, pp. 18–25). Springer Science and Business Media LLC. https://doi.org/10.1051/apido:2004050 DOI: https://doi.org/10.1051/apido:2004050
Carrera, M., Zandomeni, R. O., Fitzgibbon, J., & Sagripanti, J.-L. (2007). Difference between the spore sizes of Bacillus anthracis and other Bacillus species. In Journal of Applied Microbiology (Vol. 102, Issue 2, pp. 303–312). Wiley. https://doi.org/10.1111/j.1365-2672.2006.03111.x DOI: https://doi.org/10.1111/j.1365-2672.2006.03111.x
Abdallah, E., & Hamed, A. (2019). Screening for antibacterial activity of two jujube honey samples collected from Saudi Arabia. In Journal of Apitherapy (Vol. 5, Issue 1, pp. 6). ScopeMed. https://doi.org/10.5455/ja.20190120035814 DOI: https://doi.org/10.5455/ja.20190120035814
Berhilevych, O., Kasianchuk, V., Kukhtyn, M., Dimitrijevich, L., & Marenkova, T. (2019). The study correlation between physicochemical properties, botanical origin and microbial contamination of honey from the south of Ukraine. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 13, Issue 1, pp. 863–869). HACCP Consulting. https://doi.org/10.5219/1179 DOI: https://doi.org/10.5219/1179
Gregório, A., Galhardo, D., Sereia, M. J., Wielewski, P., Gavazzoni, L., Santos, I. F. dos, Sangaleti, G. S. S. G. M. G., Cardoso, E. C., Bortoti, T. L., Zanatta, L. A., Gonçalves, L. M., Suzin, M. A., Santos, A. A., & Toledo, V. de A. A. de. (2021). Antimicrobial activity, physical-chemical and activity antioxidant of honey samples of Apis mellifera from different regions of Paraná, Southern Brazil. In Food Science and Technology (Vol. 41, Issue suppl 2, pp. 583–590). FapUNIFESP (SciELO). https://doi.org/10.1590/fst.32820 DOI: https://doi.org/10.1590/fst.32820
Cilia, G., Fratini, F., Marchi, M., Sagona, S., Turchi, B., Adamchuk, L., Felicioli, A. & Kačániová, M. (2020). Antibacterial activity of honey samples from Ukraine. In Veterinary Sciences (Vol. 7, Issue 4, pp. 181) https://doi.org/10.3390/vetsci7040181 DOI: https://doi.org/10.3390/vetsci7040181
Israili, Z. H. (2014). Antimicrobial Properties of Honey. In American Journal of Therapeutics (Vol. 21, Issue 4, pp. 304–323). Ovid Technologies (Wolters Kluwer Health). https://doi.org/10.1097/MJT.0b013e318293b09b DOI: https://doi.org/10.1097/MJT.0b013e318293b09b
Hegazi, A., Al Guthami, F. M., Al Gethami, A. F. M., Fouad, E. A., & Abdou, A. M. (2021). Antibacterial activity and characterisation of some Egyptian honey of different floral origin. In Bulgarian Journal of Veterinary Medicine (Vol. 24, Issue 2, pp. 278–290). Trakia University. https://doi.org/10.15547/bjvm.2019-0066 DOI: https://doi.org/10.15547/bjvm.2019-0066
Al-Ghamdi, A., Ali Khan, K., Javed Ansari, M., Almasaudi, S. B., & Al-Kahtani, S. (2018). Effect of gut bacterial isolates from Apis mellifera jemenitica on Paenibacillus larvae infected bee larvae. In Saudi Journal of Biological Sciences (Vol. 25, Issue 2, pp. 383–387). Elsevier BV. https://doi.org/10.1016/j.sjbs.2017.07.005 DOI: https://doi.org/10.1016/j.sjbs.2017.07.005
Tlak Gajger, I., Vlainić, J., Šoštarić, P., Prešern, J., Bubnič, J., & Smodiš Škerl, M. I. (2020). Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis mellifera) Exposed to Probiotic Treatments, in Field and Laboratory Conditions. In Insects (Vol. 11, Issue 9, pp. 638). MDPI AG. https://doi.org/10.3390/insects11090638 DOI: https://doi.org/10.3390/insects11090638
Sabaté, D. C., Cruz, M. S., Benítez-Ahrendts, M. R., & Audisio, M. C. (2011). Beneficial Effects of Bacillus subtilis subsp. subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony Performance. In Probiotics and Antimicrobial Proteins (Vol. 4, Issue 1, pp. 39–46). Springer Science and Business Media LLC. https://doi.org/10.1007/s12602-011-9089-0 DOI: https://doi.org/10.1007/s12602-011-9089-0
Maruščáková, I. C., Schusterová, P., Bielik, B., Toporčák, J., Bíliková, K., & Mudroňová, D. (2020). Effect of Application of Probiotic Pollen Suspension on Immune Response and Gut Microbiota of Honey Bees (Apis mellifera). In Probiotics and Antimicrobial Proteins (Vol. 12, Issue 3, pp. 929–936). Springer Science and Business Media LLC. https://doi.org/10.1007/s12602-019-09626-6 DOI: https://doi.org/10.1007/s12602-019-09626-6
Audisio, M. C. (2016). Gram-Positive Bacteria with Probiotic Potential for the Apis mellifera L. Honey Bee: The Experience in the Northwest of Argentina. In Probiotics and Antimicrobial Proteins (Vol. 9, Issue 1, pp. 22–31). Springer Science and Business Media LLC. https://doi.org/10.1007/s12602-016-9231-0 DOI: https://doi.org/10.1007/s12602-016-9231-0
Orobchenko, O. L., Paliy, A. P., Palii, A. P., Petrov, R. V., Musiienko, O. V., Kysterna, O. S., Prykhodko, M. F., Furman, S. V., Lisohurska, D. V., Lisohurska, O. V. (2021). Content of inorganic elements in honey and imago samples from different regions of Ukraine. In Ukrainian Journal of Ecology. (Vol. 11, No. 3, pp 188-198). Melitopol Bogdan Khmelnytskyi State Pedagogical University https://doi.org/doi:10.15421/2021_162
USDA (United States Department of Agriculture). 2017. Production, supply, and distribution (PSD) reports – Oilseeds. Available at: https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads?tabName=default
Zymaroieva, A., Zhukov, O., Fedoniuk, T., Pinkina, T., & Vlasiuk, V. (2021). Edaphoclimatic factors determining sunflower yields spatiotemporal dynamics in northern Ukraine. In OCL (Vol. 28, pp. 26). EDP Sciences. https://doi.org/10.1051/ocl/2021013 DOI: https://doi.org/10.1051/ocl/2021013
Kalenska, S., Ryzhenko, A., Novytska, N., Garbar, L., Stolyarchuk, T., Kalenskyi, V., & Shytiy, O. (2020). Morphological Features of Plants and Yield of Sunflower Hybrids Cultivated in the Northern Part of the Forest-Steppe of Ukraine. In American Journal of Plant Sciences (Vol. 11, Issue 08, pp. 1331–1344). Scientific Research Publishing, Inc. https://doi.org/10.4236/ajps.2020.118095 DOI: https://doi.org/10.4236/ajps.2020.118095
Postmes, T., van den Bogaard, A. E., & Hazen, M. (1995). The sterilization of honey with cobalt 60 gamma radiation: a study of honey spiked with spores of Clostridium botulinum and Bacillus subtilis. In Experientia (Vol. 51, Issues 9–10, pp. 986–989). Springer Science and Business Media LLC. https://doi.org/10.1007/BF01921753 DOI: https://doi.org/10.1007/BF01921753
Roig-Sagués, A. X., Gervilla, R., Pixner, S., Terán-Peñafiel, T., & Hernández-Herrero, M. M. (2018). Bactericidal effect of ultraviolet-C treatments applied to honey. In LWT (Vol. 89, pp. 566–571). Elsevier BV. https://doi.org/10.1016/j.lwt.2017.11.010 DOI: https://doi.org/10.1016/j.lwt.2017.11.010
Hamdy, A. A., Elattal, N. A., Amin, M. A., Ali, A. E., Mansour, N. M., Awad, G. E. A., Awad, H. M., & Esawy, M. A. (2017). Possible correlation between levansucrase production and probiotic activity of Bacillus sp. isolated from honey and honey bee. In World Journal of Microbiology and Biotechnology (Vol. 33, Issue 4, pp. 69). Springer Science and Business Media LLC. https://doi.org/10.1007/s11274-017-2231-8 DOI: https://doi.org/10.1007/s11274-017-2231-8
Ngalimat, M. S., Raja Abd. Rahman, R. N. Z., Yusof, M. T., Syahir, A., & Sabri, S. (2019). Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. In PeerJ (Vol. 7, pp. e7478). PeerJ. https://doi.org/10.7717/peerj.7478 DOI: https://doi.org/10.7717/peerj.7478
Zulkhairi Amin, F. A., Sabri, S., Ismail, M., Chan, K. W., Ismail, N., Mohd Esa, N., Mohd Lila, M. A., & Zawawi, N. (2019). Probiotic Properties of Bacillus Strains Isolated from Stingless Bee (Heterotrigona itama) Honey Collected across Malaysia. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 1, pp. 278). MDPI AG. https://doi.org/10.3390/ijerph17010278 DOI: https://doi.org/10.3390/ijerph17010278
Mura-Mészáros, A., & Magyar, D. (2017). Fungal Honeydew Elements as Potential Indicators of the Botanical and Geographical Origin of Honeys. In Food Analytical Methods (Vol. 10, Issue 9, pp. 3079–3087). Springer Science and Business Media LLC. https://doi.org/10.1007/s12161-017-0862-x DOI: https://doi.org/10.1007/s12161-017-0862-x
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.