Spectroscopic assessment and quantitative analysis of the trace element composition of vegetable additives to meat products

Authors

  • Igor Palamarchuk National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of Processes and Equipment for Processing of Agricultural Production, Heroes of Defense Str., 12 B, 03040, Kyiv, Ukraine
  • Fu Yuanxia National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of Processes and Equipment for Processing of Agricultural Production, Heroes of Defense Str., 12 B, 03040, Kyiv, Ukraine/Bengbu University, Bengbu, 233030, Anhui, China https://orcid.org/0000-0002-4238-1847
  • Dmytro Zhuravel Dmytro Motornyi Tavria State Agrotechnological University, Department of Technical Service and Systems in the Agro-Industrial Complex, B. Khmelnytskoho Av. 18, Melitopol, 72312, Ukraine
  • Ievgenii Petrychenko Uman National University of Horticulture, Department of Agroengineering, Institutska St., 1, 20300 Uman, Ukraine
  • Roksolana Blishch Lviv Polytechnic National University, Faculty name, Department of Organic Products Technology, St. George's Square, 2, 79013 Lviv, Ukraine
  • Anatoliy Holovatyuk , Uman National University of Horticulture, Department of Agroengineering, Institutska St., 1, 20300 Uman, Ukraine
  • Olexander Domin National University of Life and Environmental Sciences of Ukraine, Mechanical and Technological Faculty, Department of Transport Technologies and Means of Agro-Industrial Complex, Heroes of Defense Str., 12 B, Kyiv, 03040, Ukraine
  • Tatiana Kostiuk National University of Life and Environmental Sciences of Ukraine, Faculty of Economics, Department of Economics, Heroiv Oborony Str.15, 03041, Kyiv, Ukraine

DOI:

https://doi.org/10.5219/1965

Keywords:

laser-induced spectroscopy, radiation spectrum, impurities in meat products, detection limit, quantitative analysis of spectrograms

Abstract

In this scientific work, using the method of laser-induced breakdown spectroscopy (LIBS), the spectra of beef samples and impurities in meat products, namely, banana, pineapple, kiwi, bergamot, poria coconut, Chinese angelica, chicken blood vine, were measured by using developed experimental devices. The purpose of the research was to evaluate the qualitative characteristics of additives to meat semi-finished products for the potential formation of the desired properties of the products due to the analysis of the received spectrograms of trace elements of the samples when applying the LIBS method, quantitative analysis for processing the received information. The determined values of the electron temperature of the plasma, the electron density of the used raw material samples, and the assessment of the local heat balance were used as evaluation criteria. When processing the obtained data, the characteristics of the laser-induced plasma surface of the presented samples were analyzed; the electron temperature and electron density were determined, and a quantitative analysis of trace elements was carried out. LIBS technology allows rapid real-time monitoring and qualitative analysis of trace elements online and over long distances. During the research, it turned out that quantitative analysis requires further study and optimisation of experimental conditions, such as pre-treatment of samples. These conditions optimise defocusing, double laser pulse, and sample temperature, which increases the signal/noise ratio of all spectral lines. The combination of fluorescence spectroscopy and Raman technology enables higher detection sensitivity and better molecule control, creating a quantitative analysis method model that can reduce matrix effects and overcome the self-absorption effect. Among the difficulties of using LIBS technology, several elements can be noted online simultaneously, compared to Raman. The combination of spectroscopy and fluorescence spectroscopy can obtain more comprehensive information about the composition of materials, which can become a potential platform for monitoring trace elements in food products.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Tkach, G., Omeliаn, A., Kushnir, Y., & Altanova, O. (2023). The effect of a diet based on semifinished products from plant and animal raw materials on reproductive capacity, growth, and development of the organism. In Animal Science and Food Technology (Vol. 14, Issue 4, pp. 87–98). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.4.2023.87 DOI: https://doi.org/10.31548/animal.4.2023.87

Balji, Y. (2023). Preliminary assessment of the safety of genetically modified food products. In Animal Science and Food Technology (Vol. 14, Issue 3, pp. 9–19). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.3.2023.9 DOI: https://doi.org/10.31548/animal.3.2023.9

Palamarchuk, I., Mushtruk, M., Sukhenko, V., Dudchenko, V., Korets, L., Litvinenko, A., Deviatko, O., Ulianko, S., & Slobodyanyuk, N. (2020). Modelling of the process of vybromechanical activation of plant raw material hydrolysis for pectin extraction. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 239–246). HACCP Consulting. https://doi.org/10.5219/1305 DOI: https://doi.org/10.5219/1305

Palamarchuk, I., Zozulyak, O., Mushtruk, M., Petrychenko, I., Slobodyanyuk, N., Domin, О., Udodov, S., Semenova, O., Karpovych, I., & Blishch, R. (2022). The intensification of dehydration process of pectin-containing raw materials. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 15–26). HACCP Consulting. https://doi.org/10.5219/1711 DOI: https://doi.org/10.5219/1711

Dias‐Faceto, L. S., Salvador, A., & Conti‐Silva, A. C. (2019). Acoustic settings combination as a sensory crispness indicator of dry crispy food. In Journal of Texture Studies (Vol. 51, Issue 2, pp. 232–241). Wiley. https://doi.org/10.1111/jtxs.1248 DOI: https://doi.org/10.1111/jtxs.12485

Lan, G., Li, C., He, L., Zeng, X., & Zhu, Q. (2020). Effects of different strains and fermentation methods on nattokinase activity, biogenic amines, and sensory characteristics of natto. In Journal of Food Science and Technology (Vol. 57, Issue 12, pp. 4414–4423). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-020-04478-3 DOI: https://doi.org/10.1007/s13197-020-04478-3

Fernandes Andrade, D., Pereira-Filho, E. R., & Amarasiriwardena, D. (2020). Current trends in laser-induced breakdown spectroscopy: a tutorial review. In Applied Spectroscopy Reviews (Vol. 56, Issue 2, pp. 98–114). Informa UK Limited. https://doi.org/10.1080/05704928.2020.1739063 DOI: https://doi.org/10.1080/05704928.2020.1739063

Velásquez-Ferrín, A., Babos, D. V., Marina-Montes, C., & Anzano, J. (2020). Rapidly growing trends in laser-induced breakdown spectroscopy for food analysis. In Applied Spectroscopy Reviews (pp. 1–21). Informa UK Limited. https://doi.org/10.1080/05704928.2020.1810060 DOI: https://doi.org/10.1080/05704928.2020.1810060

Zheplinska, M., Mushtruk, M., Vasyliv, V., Slobodyanyuk, N., & Boyko, Y. (2021). The Main Parameters of the Physalis Convection Drying Process. In Lecture Notes in Mechanical Engineering (pp. 306–315). Springer International Publishing. https://doi.org/10.1007/978-3-030-77823-1_31 DOI: https://doi.org/10.1007/978-3-030-77823-1_31

Thomas, J., & Chandra Joshi, H. (2023). Review on laser-induced breakdown spectroscopy: methodology and technical developments. In Applied Spectroscopy Reviews (Vol. 59, Issue 1, pp. 124–155). Informa UK Limited. https://doi.org/10.1080/05704928.2023.2187817 DOI: https://doi.org/10.1080/05704928.2023.2187817

Naozuka, J., & Oliveira, A. P. (2023). Laser‐Induced Breakdown Spectroscopy in Food Sciences. In Laser-Induced Breakdown Spectroscopy (LIBS) (pp. 781–806). Wiley. https://doi.org/10.1002/9781119758396.ch40 DOI: https://doi.org/10.1002/9781119758396.ch40

Larios, G. S., Nicolodelli, G., Senesi, G. S., Ribeiro, M. C. S., Xavier, A. A. P., Milori, D. M. B. P., Alves, C. Z., Marangoni, B. S., & Cena, C. (2020). Laser-Induced Breakdown Spectroscopy as a Powerful Tool for Distinguishing High- and Low-Vigor Soybean Seed Lots. In Food Analytical Methods (Vol. 13, Issue 9, pp. 1691–1698). Springer Science and Business Media LLC. https://doi.org/10.1007/s12161-020-01790-8 DOI: https://doi.org/10.1007/s12161-020-01790-8

Benhamou, J., Channouf, S., Lahmer, E. B., Jami, M., & Mezrhab, A. (2023). Hybrid-lattice Boltzmann Method for the Simulation of Magnetohydrodynamic Conjugate Heat Transfer and Entropy Generation in Three Dimensions. In Arabian Journal for Science and Engineering (Vol. 49, Issue 1, pp. 1181–1206). Springer Science and Business Media LLC. https://doi.org/10.1007/s13369-023-08273-y DOI: https://doi.org/10.1007/s13369-023-08273-y

Benhamou, J., Lahmer, E. B., & Jami, M. (2022). Three-dimensional simulation of conjugate heat transfer using the hybrid lattice Boltzmann-finite difference method. In International Communications in Heat and Mass Transfer (Vol. 139, p. 106486). Elsevier BV. https://doi.org/10.1016/j.icheatmasstransfer.2022.106486 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106486

Marriam, I., Tebyetekerwa, M., Xu, Z., Chathuranga, H., Chen, S., Chen, H., Zheng, J.-C., Du, A., & Yan, C. (2021). Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. In Energy Storage Materials (Vol. 43, pp. 62–84). Elsevier BV. https://doi.org/10.1016/j.ensm.2021.08.039 DOI: https://doi.org/10.1016/j.ensm.2021.08.039

Wang, L., Zhou, Y., Fu, Y., Xu, L., Gong, H., & Cheng, R. (2019). Effect of sample temperature on radiation characteristics of nanosecond laser-induced soil plasma. In Chinese Journal of Chemical Physics (Vol. 32, Issue 6, pp. 760–764). AIP Publishing. https://doi.org/10.1063/1674-0068/cjcp1901015 DOI: https://doi.org/10.1063/1674-0068/cjcp1901015

Fu, Y.-X., Wang, L., & Xu, L. (2020). Electronic temperature characteristics of laser-induced Fe plasma in fruits. In Open Physics (Vol. 18, Issue 1, pp. 40–47). Walter de Gruyter GmbH. https://doi.org/10.1515/phys-2020-0005 DOI: https://doi.org/10.1515/phys-2020-0005

Zheplinska, M., Mushtruk, M., Vasyliv, V., Kuts, A., Slobodyanyuk, N., Bal-Prylypko, L., Nikolaenko, M., Kokhan, O., Reznichenko, Y., & Salavor, O. (2021). The micronutrient profile of medicinal plant extracts. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 528–535). HACCP Consulting. https://doi.org/10.5219/1553 DOI: https://doi.org/10.5219/1553

Mushtruk, N., & Mushtruk, M. (2023). Analysis of the raw material base for pectin production. In Animal Science and Food Technology (Vol. 14, Issue 2). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.2.2023.57 DOI: https://doi.org/10.31548/animal.2.2023.57

Vasyliv, V., Mushtruk, M., Zheplinska, M., Mukoid, R., & Tkachenko, S. (2021). Method of Electrohydraulic Activation of Water-Lime Suspension in Sugar Production. In Lecture Notes in Mechanical Engineering (pp. 664–673). Springer International Publishing. https://doi.org/10.1007/978-3-030-91327-4_64 DOI: https://doi.org/10.1007/978-3-030-91327-4_64

Tang, X., Yu, H., Bui, B., Wang, L., Xing, C., Wang, S., Chen, M., Hu, Z., & Chen, W. (2021). Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. In Bioactive Materials (Vol. 6, Issue 6, pp. 1541–1554). Elsevier BV. https://doi.org/10.1016/j.bioactmat.2020.11.006 DOI: https://doi.org/10.1016/j.bioactmat.2020.11.006

Zheplinska, M., Mushtruk, M., Vasyliv, V., Sarana, V., Gudzenko, M., Slobodyanyuk, N., Kuts, A., Tkachenko, S., & Mukoid, R. (2021). The influence of cavitation effects on the purification processes of beet sugar production juices. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 18–25). HACCP Consulting. https://doi.org/10.5219/1494 DOI: https://doi.org/10.5219/1494

Stadnyk, I., Bodnarchuk, O., Kopylova, K., Petrov, P., Bal-Prylypko, L., & Narizhnyy, S. (2021). Modification of the properties of milk-fat emulsions with the phase structure of “oil in water” in the dependence on the mass part of the lipoid and the stabilizing systems. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 741–748). HACCP Consulting. https://doi.org/10.5219/1389 DOI: https://doi.org/10.5219/1389

Bal-Prylypko, L., Yancheva, M., Paska, M., Ryabovol, M., Nikolaenko, M., Israelian, V., Pylypchuk, O., Tverezovska, N., Kushnir, Y., & Nazarenko, M. (2022). The study of the intensification of technological parameters of the sausage production process. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 27–41). HACCP Consulting. https://doi.org/10.5219/1712 DOI: https://doi.org/10.5219/1712

Bober, A., Liashenko, M., Protsenko, L., Slobodyanyuk, N., Matseiko, L., Yashchuk, N., Gunko, S., & Mushtruk, M. (2020). Biochemical composition of the hops and quality of the finished beer. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 307–317). HACCP Consulting. https://doi.org/10.5219/1311 DOI: https://doi.org/10.5219/1311

Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. In Trends in Food Science & Technology (Vol. 97, pp. 443–450). Elsevier BV. https://doi.org/10.1016/j.tifs.2020.01.026 DOI: https://doi.org/10.1016/j.tifs.2020.01.026

Sun, H., Song, C., Lin, X., & Gao, X. (2022). Identification of meat species by combined laser-induced breakdown and Raman spectroscopies. In Spectrochimica Acta Part B: Atomic Spectroscopy (Vol. 194, p. 106456). Elsevier BV. https://doi.org/10.1016/j.sab.2022.106456 DOI: https://doi.org/10.1016/j.sab.2022.106456

Gibbons, E., Léveillé, R., & Berlo, K. (2020). Data fusion of laser-induced breakdown and Raman spectroscopies: Enhancing clay mineral identification. In Spectrochimica Acta Part B: Atomic Spectroscopy (Vol. 170, p. 105905). Elsevier BV. https://doi.org/10.1016/j.sab.2020.105905 DOI: https://doi.org/10.1016/j.sab.2020.105905

Korish, M. A., & Attia, Y. A. (2020). Evaluation of Heavy Metal Content in Feed, Litter, Meat, Meat Products, Liver, and Table Eggs of Chickens. In Animals (Vol. 10, Issue 4, p. 727). MDPI AG. https://doi.org/10.3390/ani10040727 DOI: https://doi.org/10.3390/ani10040727

Roosen, M., Mys, N., Kusenberg, M., Billen, P., Dumoulin, A., Dewulf, J., Van Geem, K. M., Ragaert, K., & De Meester, S. (2020). Detailed Analysis of the Composition of Selected Plastic Packaging Waste Products and Its Implications for Mechanical and Thermochemical Recycling. In Environmental Science & Technology (Vol. 54, Issue 20, pp. 13282–13293). American Chemical Society (ACS). https://doi.org/10.1021/acs.est.0c03371 DOI: https://doi.org/10.1021/acs.est.0c03371

Peng, J., Liu, Y., Ye, L., Jiang, J., Zhou, F., Liu, F., & Huang, J. (2023). Fast detection of minerals in rice leaves under chromium stress based on laser-induced breakdown spectroscopy. In Science of The Total Environment (Vol. 860, p. 160545). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2022.160545 DOI: https://doi.org/10.1016/j.scitotenv.2022.160545

Peng, J., Liu, Y., Ye, L., Jiang, J., Zhou, F., Liu, F., & Huang, J. (2022). Fast Detection of Minerals in Rice Leaves Under Chromium Stress Based on Laser-Induced Breakdown Spectroscopy. In SSRN Electronic Journal. Elsevier BV. https://doi.org/10.2139/ssrn.4203274 DOI: https://doi.org/10.2139/ssrn.4203274

Li, L., Wan, Y., Lu, J., Fang, H., Yin, Z., Wang, T., Wang, R., Fan, X., Zhao, L., & Tan, D. (2020). Lattice Boltzmann Method for Fluid-Thermal Systems: Status, Hotspots, Trends and Outlook. In IEEE Access (Vol. 8, pp. 27649–27675). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/access.2020.2971546 DOI: https://doi.org/10.1109/ACCESS.2020.2971546

Numerical simulation of separated flows using entropic lattice Boltzmann method. (2023). American Institute of Aeronautics and Astronautics (AIAA). https://doi.org/10.2514/6.2023-1569.vid DOI: https://doi.org/10.2514/6.2023-1569.vid

Guo, S., Feng, Y., Jacob, J., Renard, F., & Sagaut, P. (2020). An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice. In Journal of Computational Physics (Vol. 418, p. 109570). Elsevier BV. https://doi.org/10.1016/j.jcp.2020.109570 DOI: https://doi.org/10.1016/j.jcp.2020.109570

Ma, J., Wang, Z., Young, J., Lai, J. C. S., Sui, Y., & Tian, F.-B. (2020). An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries. In Journal of Computational Physics (Vol. 415, p. 109487). Elsevier BV. https://doi.org/10.1016/j.jcp.2020.109487 DOI: https://doi.org/10.1016/j.jcp.2020.109487

Mushtruk, M., Palamarchuk, I., Palamarchuk, V., Gudzenko, M., Slobodyanyuk, N., Zhuravel, D., Petrychenko, I., & Pylypchuk, О. (2023). Mathematical modelling of quality assessment of cooked sausages with the addition of vegetable additives. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 17, pp. 242–255). HACCP Consulting. https://doi.org/10.5219/1845 DOI: https://doi.org/10.5219/1845

Pylypchuk, O., Tyshchenko, L., Israelian, V., & Mushtruk, N. (2022). Influence of parameters of marinating meat semi-finished products on the quality of the finished product. In Animal Science and Food Technology (Vol. 13, Issue 2). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.13(2).2022.44-52 DOI: https://doi.org/10.31548/animal.13(2).2022.44-52

Wang, M., Zhou, J., Tavares, J., Pinto, C. A., Saraiva, J. A., Prieto, M. A., Cao, H., Xiao, J., Simal-Gandara, J., & Barba, F. J. (2022). Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability, and quality. In Critical Reviews in Food Science and Nutrition (Vol. 63, Issue 26, pp. 8357–8374). Informa UK Limited. https://doi.org/10.1080/10408398.2022.2054939 DOI: https://doi.org/10.1080/10408398.2022.2054939

Ivaniuta, A., Menchynska, A., Ochkolias, O., Qu, X., & Nesterenko, N. (2022). Effectiveness of using beer groats in the technology of semifinished fish products. In Animal Science and Food Technology (Vol. 13, Issue 1, pp. 16–23). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.13(1).2022.16-23 DOI: https://doi.org/10.31548/animal.13(1).2022.16-23

Zhu, M., Huang, D., Hu, X., Tong, W., Han, B., Tian, J., & Luo, H. (2020). Application of hyperspectral technology in detection of agricultural products and food: A Review. In Food Science & Nutrition (Vol. 8, Issue 10, pp. 5206–5214). Wiley. https://doi.org/10.1002/fsn3.1852 DOI: https://doi.org/10.1002/fsn3.1852

Mahdinia, E., Liu, S., Demirci, A., & Puri, V. M. (2020). Microbial Growth Models. In Food Engineering Series (pp. 357–398). Springer International Publishing. https://doi.org/10.1007/978-3-030-42660-6_14 DOI: https://doi.org/10.1007/978-3-030-42660-6_14

Zhu, Y., He, H., Jiang, S., Ma, H., Chen, F., Xu, B., Liu, H., Zhu, M., Zhao, S., & Kang, Z. (2021). Mining hyperspectral data for non-destructive and rapid prediction of nitrite content in ham sausages. In International Journal of Agricultural and Biological Engineering (Vol. 14, Issue 2, pp. 182–187). International Journal of Agricultural and Biological Engineering (IJABE). https://doi.org/10.25165/j.ijabe.20211402.5407 DOI: https://doi.org/10.25165/j.ijabe.20211402.5407

Shi, S., Feng, J., Ma, Y., Cao, C., Li, L., & Jiang, Y. (2023). Rapid determination of two illegal additives in wheat flour by near-infrared spectroscopy and different key wavelength selection algorithms. In LWT (Vol. 189, p. 115437). Elsevier BV. https://doi.org/10.1016/j.lwt.2023.115437 DOI: https://doi.org/10.1016/j.lwt.2023.115437

Fu, H., Zhang, A., Sun, G., Ren, J., Jia, X., Pan, Z., & Ma, H. (2022). A Novel Band Selection and Spatial Noise Reduction Method for Hyperspectral Image Classification. In IEEE Transactions on Geoscience and Remote Sensing (Vol. 60, pp. 1–13). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tgrs.2022.3189015 DOI: https://doi.org/10.1109/TGRS.2022.3189015

Downloads

Published

2024-06-10

How to Cite

Palamarchuk, I., Yuanxia, F., Zhuravel, D., Petrychenko, I., Blishch, R., Holovatyuk, A., Domin, O., & Kostiuk, T. (2024). Spectroscopic assessment and quantitative analysis of the trace element composition of vegetable additives to meat products. Potravinarstvo Slovak Journal of Food Sciences, 18, 480–496. https://doi.org/10.5219/1965

Most read articles by the same author(s)