Hormonal changes in spring barley after triazine herbicide treatment and its mixtures of regulators of polyamine biosynthesis

Authors

  • Pavol Trebichalský Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Tomáš Tóth Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Daniel Bajčan Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Ľuboš Harangozo Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Alena Vollmannová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/719

Keywords:

barley, phytohormones, polyamines, herbicide

Abstract

Plants adapt to abiotic stress by undergoing diverse biochemical and physiological changes that involve hormone-dependent signalling pathways. The effects of regulators of polyamine biosynthesis can be mimicked by exogenous chemical regulators such as herbicide safeners, which not only enhance stress tolerance but also confer hormetic benefits such as increased vigor and yield. The phytohormones, abscisic acid (ABA) and auxin (IAA) play key roles in regulating stress responses in plants. Two years pot trials at Slovak University of agriculture Nitra were carried out with analyses of contents of plant hormones in spring barley grain of variety Kompakt: indolyl-acetic acid (IAA) and abscisic acid (ABA), after exposing of tested plants to herbicide stress, as well as the possible decrease of these stress factors with application of regulators of polyamine synthesis was evaluated. At 1st year in spring barley grain after application of solo triazine herbicide treatment in dose 0,5 L.ha-1 an increase of all analyzed plant hormones was observed and contrary, at 2nd year there was the decrease of their contents. From our work there is an obvious influence of herbicide stress induced by application of certain dose of triazine herbicide at 1st year. Expect of the variant with mixture of triazine herbicide (in amount of 0,5 L.ha-1) and 29,6 g.ha-1 DAB, at this year all by us applied regulators of polyamine synthesis reduced the level of both plant hormones. Higher affect of stress caused by enhanced content of soluble macroelements in soil where the plants of barley were grown was observed next year. Soil with increased contents of macronutrients (mg.kg-1): N30.7 + P108.3 + K261.5 + Mg604.2 had reducing effect on contents of plant hormones in barley grain at variant treated with solo triazine herbicide (in dose at 0,5 L.ha-1) in comparison to control variant. The mixtures of regulators of polyamine synthesis reduced the contents of IAA only in comparison to control variant. Decline in amount of ABA in barley grain was observed only after treatment with GABA, also in comparison to variant treated with water. Other mixtures of morphoregulators in combination with herbicide had not strong influence on contents of tested plant hormones in barley grain of variety Kompakt.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Agostinetto, D., Perboni, L. T., Langaro, A. C., Gomes, J., Fraga, D. S., Franco, J. J. 2016. Changes in photosynthesis and oxidative stress in wheat plants submmited to herbicides application. Planta Daninha, Viçosa-MG, vol. 34, no. 1, p. 1-9. https://doi.org/10.1590/S0100-83582016340100001 DOI: https://doi.org/10.1590/S0100-83582016340100001

Bari, R, Jones, J. D. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology, vol. 69, no.4, p. 473-488. https://doi.org/10.1007/s11103-008-9435-0 DOI: https://doi.org/10.1007/s11103-008-9435-0

Boursiac, Y., Léran, S., Corratgé-Faillie, C., Gojon, A., Krouk, G., Lacombe, B. 2013. ABA transport and transporters. Trends in Plant Science, vol.18, no. 6, p. 325-333. https://doi.org/10.1016/j.tplants.2013.01.007 DOI: https://doi.org/10.1016/j.tplants.2013.01.007

Bown, A. W., Shelp, B. J. 2016. Plant GABA: Not Just a Metabolite. Trends in plant science, vol. 21, no. 10, p. 811-813. https://doi.org/10.1016/j.tplants.2016.08.001 DOI: https://doi.org/10.1016/j.tplants.2016.08.001

Cabot, C. J. V., Barceló, S. J., Poschenrieder, C. 2009. Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. Journal of Plant Growth Regulation, vol. 28, no. 2, p. 187-192. https://doi.org/10.1007/s00344-009-9088-5 DOI: https://doi.org/10.1007/s00344-009-9088-5

Choudhary, S. P., Oral, H. V., Bhardwaj, R., Yu, J. Q., Tran, L. S. 2012. Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. Journal of Experimental Botany, vol. 63, no. 15, p. 5659-5675. https://doi.org/10.1093/jxb/ers219 PMid:22915739 DOI: https://doi.org/10.1093/jxb/ers219

Dashevskaya, S., Horn, R., Chudobova, I., Schillberg, S., Vélez, S., Capell, T., Christou, P. 2013. Abscisic acid and the herbicide safener cyprosulfamide cooperatively enhance abiotic stress tolerance in rice. Molecular Breeding, vol. 32, no. 2, p. 463-484. https://doi.org/10.1007/s11032-013-9884-2 DOI: https://doi.org/10.1007/s11032-013-9884-2

Fehér, A., Halmová, D., Pindešová, I. F., Zajác, P., Čapla, J. Distribution of invasive plants in the Nitra river basin: threats and benefits for food production. Potravinarstvo, vol. 10, no. 1, p. 605-611. https://doi.org/10.5219/651 DOI: https://doi.org/10.5219/651

Fernando, V. C. D., and Schroeder, D. F. 2016. Role of ABA in Arabidopsis Salt, Drought, and Desiccation Tolerance. In Arun K. Shanker et.al. Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives. Rijeka, Croatia : InTech, 768 p. ISBN 978-953-51-2250-0. DOI: https://doi.org/10.5772/61957

Finkelstein, R. R., Gampala, S. S. L., Rock, C. D. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell, vol. 14, p.15-45. DOI: https://doi.org/10.1105/tpc.010441

Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S. Y., Cutler, S. R., Sheen, J., Rodriquez, P. L., Zhu, J. K. 2009. In vitro reconstitution of an abscisic acid signalling pathway. Nature, vol. 462, no. 7273, p. 660-664. https://doi.org/10.1038/nature08599 PMid:19924127 DOI: https://doi.org/10.1038/nature08599

Gaur, ‎R. K., Sharma, P. 2014. Approaches to Plant Stress and their Management. India : Springer India. 396 p. ISBN 978-81-322-1619-3.

Gill, S. S., Tuteja, N. 2010. Polyamines and abiotic stress tolerance in plants. Plant Signaling and Behavior, vol. 5, no. 1, p. 26-33. https://doi.org/10.4161/psb.5.1.10291 DOI: https://doi.org/10.4161/psb.5.1.10291

Gurmani, A. R., Bano, A., Khan, S. U., Din, J., Zhang, J. L. 2011. Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.). Australian Journal of Crop Science, vol. 5, no. 10, p. 1278-1285.

Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L. S. 2012. Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science, vol. 17, no. 3, p. 172-179. https://doi.org/10.1016/j.tplants.2011.12.005 DOI: https://doi.org/10.1016/j.tplants.2011.12.005

Islam, F., Ali, B., Wang, J., Farooq, M. A., Gill, R. A., Ali, S., Wang, D., Zhou, W. 2016. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars. Plant Physiology and Biochemistry, vol. 107, p. 82-95. https://doi.org/10.1016/j.plaphy.2016.05.027 DOI: https://doi.org/10.1016/j.plaphy.2016.05.027

Jeschke, W. D., Peuke, A. D., Pate, J. S., Hartung, W. 1997. Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. Journal of Experimental Botany, vol. 48, no. 314, p. 1737-1747. https://doi.org/10.1093/jexbot/48.314.1737 DOI: https://doi.org/10.1093/jexbot/48.314.1737

Kang, J., Hwang, J. U., Lee, M., Kim, Y. Y., Assmann, S. M., Martinoia, E., Lee, Y. 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy Science of the United States of America, vol. 107, no. 5, p. 2355-2360. https://doi.org/10.1073/pnas.0909222107 PMid:20133880 DOI: https://doi.org/10.1073/pnas.0909222107

Kaur-Sawhney, R., Shih, L. M., Flores, H. E., Galston, A. W. 1982. Relation of polyamine synthesis and titer to aging and senescence in oat leaves. Plant Physiology, vol. 69, no. 2, p. 405-410. https://doi.org/10.1104/pp.69.2.405 PMid:16662218 DOI: https://doi.org/10.1104/pp.69.2.405

Kurepin, L. V., Ozga, J. A., Zaman, M., Pharis, R. P. 2013. The Physiology of Plant Hormones in Cereal, Oilseed and Pulse Crops. Prairie Soils & Crops Journal, vol. 6, p. 7-23.

Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y, Shinozaki, K. 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy Science of the United States of America, vol. 107, no. 5, p. 2361-2366. https://doi.org/10.1073/pnas.0912516107 PMid:20133881 DOI: https://doi.org/10.1073/pnas.0912516107

Lata, C., Prasad, M. 2011. Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany, vol. 62, no. 14, p. 4731-4748. https://doi.org/10.1093/jxb/err210 PMid:21737415 DOI: https://doi.org/10.1093/jxb/err210

Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., Grill, E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, vol. 324, no. 5930, p. 1064-1068. https://doi.org/10.1126/science.1172408 DOI: https://doi.org/10.1126/science.1172408

Michaeli, S., Fait, A., Lagor, K., Nunes-Nesi, A., Grillich, N., Yellin, A., Bar, D., Khan, M., Fernie, A. R., Turano, F. J., Fromm, H. 2011. A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. Plant Journal, vol. 67, no. 3, p. 485-498. DOI: https://doi.org/10.1111/j.1365-313X.2011.04612.x

Michaeli, S., Fromm, H. 2015. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Frontiers in Plant Science, vol. 6, p. 419. https://doi.org/10.3389/fpls.2015.00419 PMid:26106401 DOI: https://doi.org/10.3389/fpls.2015.00419

Mittler, R., Blumwald, E. 2015. The Roles of ROS and ABA in Systemic Acquired Acclimation. The Plant Cell January, vol. 27, no. 1, p. 64-70. DOI: https://doi.org/10.1105/tpc.114.133090

Nakashima, K., Yamaguchi-Shinozaki, K. 2013. ABA signaling in stress-response and seed development. Plant Cell Reports, vol. 32, no. 7, p. 959-70. https://doi.org/10.1007/s00299-013-1418-1 PMid:23535869 DOI: https://doi.org/10.1007/s00299-013-1418-1

Navarro, L., Bari, R., Achard, P., Lison, P., Nemri, A., Harberd, N. P., Jones, J. D. 2008. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Current Biology, vol. 18, no. 9, p. 650-655. https://doi.org/10.1016/j.cub.2008.03.060 PMid:18450451 DOI: https://doi.org/10.1016/j.cub.2008.03.060

Nishiyama, R., Watanabe, Y., Leyva-Gonzalez, M. A., Van, H. C., Fujita, Y., Tanaka, M., Seki, M., Yamaguchi-Shinozaki, K., Shinozaki, K., Herrera-Estrella, L., Tran, L. S. 2013. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proceedings of the National Academy Science of the USA, vol. 110, no. 12, p. 4840-4845. https://doi.org/10.1073/pnas.1302265110 DOI: https://doi.org/10.1073/pnas.1302265110

Oliveira, R. S., Constantin, J., Inoue, M. H. 2011. Mecanismo de ação de herbicidas. In de Oliveida R. S. et al. Biologia e manejo de plantas daninhas. Curitiba : Omnipax, p. 141-192. ISBN: 978-85-64619-02-9.

Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L. S. P. 2013. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. Journal of Experimental Botany, vol. 64, no. 2, p. 445-458. https://doi.org/10.1093/jxb/ers354 PMid:23307915 DOI: https://doi.org/10.1093/jxb/ers354

Parent, B., Hachez, C., Redondo, E., Simonneau, T., Chaumont, F., Tardieu, F. 2009. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiology, vol. 149, no. 4, p. 2000-2012. https://doi.org/10.1104/pp.108.130682 PMid:19211703 DOI: https://doi.org/10.1104/pp.108.130682

Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J. K., Schroeder, J. I., Volkman, B. F., Cutler, S. R. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, vol. 324, p. 1068-1071. https://doi.org/10.1126/science.1173041 DOI: https://doi.org/10.1126/science.1173041

Peleg, Z., Blumwald, E. 2011. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, vol. 14, no. 3, p. 290-295. https://doi.org/10.1016/j.pbi.2011.02.001 DOI: https://doi.org/10.1016/j.pbi.2011.02.001

Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., Van Wees, S. C. 2009. Networking by small-molecule hormones in plant imunity. Nature Chemical Biology, vol. 5, p. 308-316. https://doi.org/10.1038/nchembio.164 DOI: https://doi.org/10.1038/nchembio.164

Piñol, R., Simón, E. 2011. Protective effects of brassinosteroids against herbicides. In Hayat, S. et al. Brassinosteroids: A class of plant hormone. Netherlands : Springer Science+Business Media B.V., p. 309-344. ISBN: 978-94-007-0188-5. DOI: https://doi.org/10.1007/978-94-007-0189-2_11

Qin, F., Shinozaki, K., Yamaguchi-Shinozaki, K. 2011. Plant abiotic stress responses and tolerance. Plant & Cell Physiology, vol. 52, no. 9, p. 1569-1582. https://doi.org/10.1093/pcp/pcr106 PMid:21828105 DOI: https://doi.org/10.1093/pcp/pcr106

Raghavendra, A. S., Gonugunta, V. K., Christmann, A., Grill, E. 2010. ABA perception and signalling. Trends in Plant Science, vol. 15, no. 7, p. 395-401. https://doi.org/10.1016/j.tplants.2010.04.006 DOI: https://doi.org/10.1016/j.tplants.2010.04.006

Ramakrishna, A., Ravishankar, G. A. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, vol. 6, no. 11, p. 1720-1731. https://doi.org/10.4161/psb.6.11.17613 DOI: https://doi.org/10.4161/psb.6.11.17613

Renault, H. 2013. Fiat lux! Phylogeny and bioinformatics shed light on GABA functions in plants. Plant Signaling and Behavior, vol. 8, no. 6, p. e24274. https://doi.org/10.4161/psb.24274 PMid:23518583 DOI: https://doi.org/10.4161/psb.24274

Shakirova, F. M., Allagulova, C. R., Maslennikova, D. R., Klyuchnikova, E. O., Avalbaev, A. M., Bezrukova, M. V. 2016. Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environmental and Experimental Botany, vol. 122, p. 19-28. https://doi.org/10.1016/j.envexpbot.2015.08.002 DOI: https://doi.org/10.1016/j.envexpbot.2015.08.002

Shinozaki, K, Yamaguchi-Shinozaki, K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, vol. 58, no. 2, p. 221-227. https://doi.org/10.1093/jxb/erl164 DOI: https://doi.org/10.1093/jxb/erl164

Song, Y., Miao, Y., Song, C. P. 2014. Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytologist, vol. 201, no. 4, p. 1121-1140. https://doi.org/10.1111/nph.12565 DOI: https://doi.org/10.1111/nph.12565

Tavladoraki, P., Cervelli, M., Antonangeli, F., Minervini, G., Stano, P., Federico, R., Mariottini, P. Polticelli, F. 2011. Probing mammalian spermine oxidase enzyme-substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization. Amino acids, vol. 40, no. 4, p. 1115-1126. https://doi.org/10.1007/s00726-010-0735-8 DOI: https://doi.org/10.1007/s00726-010-0735-8

Todorova, D., Katerova, Z., Alexieva, V., Sergiev, I. 2015. Polyamines - possibilities for application to increase plant tolerance and adaptation capacity to stress. Genetics and Plant Physiology, vol. 5, no. 2, p. 123-144. https://doi.org/10.1079/9781780642734.0194 DOI: https://doi.org/10.1079/9781780642734.0194

Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama, Y., Hirayama, T., Shinozaki, K. 2009. Type 2C protein phosphatasesdirectly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy Science of the United States of America, vol. 106, no. 41, p. 17588-17593. https://doi.org/10.1073/pnas.0907095106 DOI: https://doi.org/10.1073/pnas.0907095106

Vanstraelen, M., Benkova, E. 2012. Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology, vol. 28, p. 463-487. https://doi.org/10.1146/annurev-cellbio-101011-155741 DOI: https://doi.org/10.1146/annurev-cellbio-101011-155741

Velini, E. D., Trindade, M. L., Barberis, R. M., Duke, S. O. 2010. Growth regulation and other secondary effects of herbicides. Weed Science, vol. 58, no. 3, p. 351-354. https://doi.org/10.1614/WS-D-09-00028.1 DOI: https://doi.org/10.1614/WS-D-09-00028.1

Verma, V., Ravindran, P., Kumar, P. 2016. Plant hormone-mediated regulation of stress responses. Plant Biology BMC series - open, inclusive and trusted, vol. 16, p. 86. https://doi.org/10.1186/s12870-016-0771-y DOI: https://doi.org/10.1186/s12870-016-0771-y

Wang, Z. Y., Xiong, L., Li, W., Zhu, J. K., Zhu, J. 2011. The Plant Cuticle Is Required for Osmotic Stress Regulation of Abscisic Acid Biosynthesis and Osmotic Stress Tolerance in Arabidopsis. Plant Cell, vol. 23, no. 5, p.1971-1984. https://doi.org/10.1105/tpc.110.081943 DOI: https://doi.org/10.1105/tpc.110.081943

Xu, X., van Lammeren, A. A., Vermeer, E., Vreugdenhil, D. 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, vol. 117, no. 2, p. 575-584. https://doi.org/10.1104/pp.117.2.575 DOI: https://doi.org/10.1104/pp.117.2.575

Downloads

Published

2017-04-11

How to Cite

Trebichalský, P. ., Tóth, T. ., Bajčan, D. ., Harangozo, Ľuboš ., & Vollmannová, A. . (2017). Hormonal changes in spring barley after triazine herbicide treatment and its mixtures of regulators of polyamine biosynthesis. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 156–161. https://doi.org/10.5219/719

Most read articles by the same author(s)

<< < 1 2 3 4