Identification and differentiation of Ricinus communis L. using SSR markers
DOI:
https://doi.org/10.5219/516Keywords:
castor, genetic diversity, molecular markers, simple sequence repeat, SSRAbstract
The castor-oil plant (Ricinus communis L.), a member of the spurge family (Euphorbiaceae), is a versatile industrial oil crop that is cultivated in many tropical and subtropical regions of the world. Castor oil is of continuing importance to the global specialty chemical industry because it is the only commercial source of a hydroxylated fatty acid. Castor also has tremendous future potential as an industrial oilseed crop because of its high seed oil content, unique fatty acid composition, potentially high oil yields and ability to be grown under drought and saline conditions. Knowledge of genetic variability is important for breeding programs to provide the basis for developing desirable genotypes. The aim of this study was to assess genetic diversity within the set of 60 ricin genotypes using 10 SSR primers. Ten SSR primers revealed a total of 67 alleles ranging from 4 to 9 alleles per locus with a mean value of 6.70 alleles per locus. The PIC values ranged from 0.719 to 0.860 with an average value of 0.813 and the DI value ranged from 0.745 to 0.862 with an average value of 0.821. Probability of identity (PI) was low ranged from 0.004 to 0.018 with an average of 0.008. A dendrogram was constructed from a genetic distance matrix based on profiles of the 10 SSR loci using the unweighted pair-group method with the arithmetic average (UPGMA). According to analysis, the collection of 60 diverse accessions of castor bean was clustered into six clusters. We could not distinguish 2 genotypes grouped in cluster 1, RM-96 and RM-98, which are genetically the closest. Knowledge on the genetic diversity of castor can be used to future breeding programs of castor.
Downloads
Metrics
References
Ahmad, Z., Nisar, M., Mumtaz, A. S., Ghafoor, A., Ali, S. 2014. SSR markers linked to seed size and seed weight in local and exotic chickpea germplasm reported from Pakistan. Pak. J. Bot., vol. 46, no. 6, p. 2113-2120.
Aslam, K. and Arif, M. 2014. SSR analysis of chromosomes 3 and 7 of rice (Oryza staiva L.) associated with grain length. Pak. J. Bot., vol. 46, no. 4, p. 1363-1372.
Bajay, M. M., Pinheiro, J. B., Batista, C. E. A., Nobrega, M. B. M., Zucchi, M. I. 2009. Development and characterization of microsatellite markers for castor (Ricinus communis L.), an important oleaginous species for biodiesel production. Conserv. Genet., vol. 1, p. 237-239. https://doi.org/10.3732/ajb.1000395 PMid:21613155 DOI: https://doi.org/10.1007/s12686-009-9058-z
Bajay, M. M., Zucchi, M. I., Kiihl, T. A. M., Batista, C. E. A., Monteiro, M., Pinheiro, J. B. 2011. Development of a novel set of microsatellite markers for Castor bean, Ricinus communis (Euphorbiaceae). Am. J. Bot., vol. 98, p. 87-89. https://doi.org/10.3732/ajb.1000395 DOI: https://doi.org/10.3732/ajb.1000395
Dhingani, R. M., Tomar, R. S., Parakhia, M. V., Patel, S. V., Golakiya, B. A. 2012. Analysis of genetic diversity among different Ricinus communis genotypes for macrophomina root rot through RAPD and microsatellite markers. International Journal of Plant Protection, vol. 5, no. 1, p. 1-7. [cit. 2015-09-14] Available at: http://www.cabdirect.org/abstracts/20133024230.html;jsessionid=8260887C92F38C29B45D56079AEFD335
Fayyaz, L., Farhatullah, Rabbani, M. A., Iqbal, S., Kanwal, M., Nawaz, I. 2014. Genetic diversity analysis of Brassica napus/Brassica campestris progenies using microsatellite markers. Pak. J. Bot., vol. 46, no. 3, p. 779-787.
Foster J. T., Allan, G. J., Chan, A. P., Rabinowicz, P. D., Ravel, J., Jackson, P. J., Keim, P. 2010. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol., vol. 10, p. 13-18. https://doi.org/10.1186/1471-2229-10-13 PMid:20082707 DOI: https://doi.org/10.1186/1471-2229-10-13
Gedil, M., Kolade, F., Raji, A., Ingelbrecht, I., Dixon, A. 2009. Development of molecular genomic tools for verification of intergeneric hybrids between castor bean (Ricinus communis L.) and cassava (Manihot esculenta Crantz). Journal of Food, Agriculture & Environment, vol. 7, no. 2, p. 534-539.
Jeong, G. T., Park, D. H. 2009. Optimization of biodiesel production from castor oilusing response surface methodology. Appl. Biochem. Biotech., vol. 156, p. 1-11. https://doi.org/10.1007/s12010-008-8468-9 PMid:19089650 DOI: https://doi.org/10.1007/s12010-008-8468-9
Kallamadi, P. R., Ganga Rao Nadigatla, V. P. R., Mulpuri, S. 2015. Molecular diversity in castor (Ricinus communis L.). Industrial Crops and Products, vol. 66, p. 271-281. https://doi.org/10.1016/j.indcrop.2014.12.061 DOI: https://doi.org/10.1016/j.indcrop.2014.12.061
Kanwal, M., Farhatullah, Rabbani, M. A., Iqbal, S., Fayyaz, L. and Nawaz, I. 2014. The assessment of genetic diversity between and within brassica species and their wild relative (Eruca sativa) using SSR markers. Pak. J. Bot., vol. 46, no. 4, p. 1515-1520. [cit. 2015-09-14] Available at: https://inis.iaea.org/search/search.aspx?orig_q=RN:45088849 DOI: https://doi.org/10.2298/GENSR1402537K
Kyoung-In S., Gi-An, L., Kyung-Ho, M., Do-Yoon, H., Yong-Jin, P., Jong-Wook, J., Sok-Young, L., Jae-Gyun, G., Chung-Kon, K., Myung-Chul, L. 2011. Isolation and characterization of 28 polymorphic SSR loci from Castor Bean (Ricinus communis L.). J. Crop Sci. Biotech., vol. 14, no. 2, p. 97-103. https://doi.org/10.1007/s12892-010-0107-7 DOI: https://doi.org/10.1007/s12892-010-0107-7
Maršálková, L., Židek, R., Pokoradi, J., Golian, J., Belej, Ľ. 2014. Genetic diversity and relatedness among seven red deer (Cervus Elaphus) populations. Potravinarstvo, vol. 8, no. 1, p. 15-19. https://doi.org/10.5219/320 DOI: https://doi.org/10.5219/320
Ogunniyi, D. S. 2006. Castor oil: a vital industrial raw material. Bioresour. Technol., vol. 97, p. 1086-1091. DOI: https://doi.org/10.1016/j.biortech.2005.03.028
Paetkau, D., Calvert, W., Stirling, I., Strobeck, C. 1995. Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol., vol. 4, p. 347-354. DOI: https://doi.org/10.1111/j.1365-294X.1995.tb00227.x
Pecina-Quintero, V., Anaya-López, J. L., Núnez-Colín, C. A., Zamarripa-Colmenero, A., Montes-García, N., Solís-Bonilla, J. L., Aguilar-Rangel, M. R. 2013. Assessing the genetic diversity of castor bean from Chiapas, México using SSR and AFLP markers. Industrial Crops and Products, vol. 41, 134-143. https://doi.org/10.1016/j.indcrop.2012.04.033 DOI: https://doi.org/10.1016/j.indcrop.2012.04.033
Polat, I., Turgutoglu, E., Kurt, S. 2015. Determination of genomic diversity within mutant lemon (Citrus limon L.) and mandarin (Citrus reticulata) using molecular markers. Pak. J. Bot., vol. 47, no. 3, p. 1095-1102.
Siripiyasing, P., Kaenratana, K., Mokkamul, P., Chaveerach, A. 2013. Molecular assessment for genetic identification and stability of Cymbidium Sanderae (Orchidaceae). Pak. J. Bot., vol. 45, no. 2, p. 519-523.
Tan, M., Yan, M., Wang, L., Yan, X., Fu, Ch., Wang, L. 2013. Replication of pistillate plants of Ricinus communis L. and investigationof the sex stability and genetic variation of the somaclones. Industrial Crops and Products, vol. 50, p. 50-57. https://doi.org/10.1016/j.indcrop.2013.06.042 DOI: https://doi.org/10.1016/j.indcrop.2013.06.042
Tan, M., Wu, K., Wang, L., Yan, M., Zhao, Z., Xu, J., Zeng, Y., Zhang, X., Fu, Ch., Xue, J., Wang, L., X. Yan, X. 2014. Developing and characterising Ricinus communis SSR markers by data mining of whole-genome sequences. Mol Breeding, vol. 34, p. 893-904. https://doi.org/10.1007/s11032-014-0083-6 DOI: https://doi.org/10.1007/s11032-014-0083-6
Vivodík, M., Balážová, Ž., Gálová, Z. 2014. RAPD analysis of the genetic diversity of castor bean. International journal of biological, veterinary, agricultural and food engineering., vol.8, no. 7, p. 583-586. Available at: http://www.researchgate.net/publication/277015768_RAPD_Analysis_of_Genetic_Diversity_of_Castor_Bean
Yang, B., Ji, W., Wang, Ch., Xue, F., Ali, M., Wang, Y., Zhang, H., Liu, X. 2013. Chromosome location and SSR markers of a stripe rust resistance gene from wheat (Triticum aestivum) line n9738. Pak. J. Bot., vol. 45, no. 3, p. 719-724.
Yousaf, Z., Hu, W., Zhang, Y., Zeng, S. and Wang, Y. 2015. Systematic validation of medicinally important genus epimedium species based on microsatellite markers. Pak. J. Bot., vol. 44, no. 2, p. 477-484.
Žiarovská, J., Ražná, K., Labajová, M. 2013. Using of Inter Microsatellite Polymorphism to evaluate gamma-irradiated Amaranth mutants. Emir. J. Food Agric., vol. 25, no. 9, p. 673-681. https://doi.org/10.9755/ejfa.v25i9.15879 DOI: https://doi.org/10.9755/ejfa.v25i9.15879
Weber, J. L. 1990. Informativeveness of human (dC-dA)n x (dG-dT)n polymorphism. Genomics, vol. 7, p. 524-530. DOI: https://doi.org/10.1016/0888-7543(90)90195-Z
Weir, B. S. 1990. Genetic data analysis. Methods for discrete population genetic data. 1990 p. ISBN 0-87893-872-9
Woodhead, M., Russell, J., Squirrell, J., Hollingsworth, P. M., Mackenzie, K., Gibby, M., Powell, W. 2005. Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol. Ecol., vol. 14, p. 1681-1695. PMid:15836642 DOI: https://doi.org/10.1111/j.1365-294X.2005.02543.x
Downloads
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.