Genetic diversity in Tunisian castor genotypes (Ricinus communis L.) detected using RAPD markers
DOI:
https://doi.org/10.5219/1116Keywords:
castor; DNA; dendrogram; PCR; PICAbstract
Castor (Ricinus communis L.) is a plant that is commercially very important to the world. It is produced in about
30 countries lying in the tropical belt of the world. It is an important plant for production of industrial oil. Assessment of genetic diversity of a crop species is a prerequisite to its improvement; hence it is important to identify the genetic diversity of castor genetic resources for development of improved cultivars. The present study is focused on estimation of genetic distance between 56 Tunisian castor genotypes, based on 18 RAPD markers. Seeds of castor were obtained from the University of Carthage, National Institute of Research in Rural Engineering, Waters and Forests (INRGREF), Regional Station of Gabí¨s, Tunisia. The ricin genotypes were obtained from 12 regions of Tunisia. The efficacy of the RAPD technique in this study is further supported by the obtained PIC values of the primers used in the analysis. PCR amplification of DNA using 18 primers for RAPD analysis produced 145 DNA fragments that could be scored in all 56 genotypes of Tunisian castor. The number of amplified fragments varied from 3 (OPE-07) to 13 (SIGMA-D-01), and the amplicon size ranged from 100 to 1500 bp. Of the 145 amplified bands, 145 were polymorphic, with an average of 8.11 polymorphic bands per primer. The lowest values of polymorphic information content were recorded for RLZ 9 (0.618) and the the highest PIC values were detected for OPD-08 (0.846) with an average of 0.761. A dendrogram was constructed from a genetic distance matrix based on profiles of the 18 RAPD primers using the unweighted pair-group method with the arithmetic average (UPGMA). According to analysis, the collection of 56 Tunisian castor genotypes were clustered into five main clusters. Genetically the closest were four genotypes from cluster 1 (BT-1 - S-5 and K-1 - N-3). Knowledge of the genetic diversity of castor can be used in future breeding programs for increased oil production to meet the ever increasing demand of castor oil for industrial uses as well as for biodiesel production.
Downloads
References
Allan, G., Williams, A., Rabinowicz, P. D., Chan, A. .P., Ravel, J., Keim P. 2008. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genetetic Resources Crop Evolution, vol. 55, no. 3, p. 365-378. https://doi.org/10.1007/s10722-007-9244-3
Ansari, S., Solouki, M., Fakheri, B., Fazeli-Nasab, B., Mahdinezhad, N. 2018. Assesment of molecular diversity of internal transcribed spacer region in some lines and landrace of Persian clover (Trifolium Resupinatum L.). Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 657-666. https://doi.org/10.5219/960
Balážová, Ž., Vivodík, M., Gálová, Z. 2016. Assessment of RAPD polymorphism in ricin genotypes. Journal of Microbiology, Biotechnology and Food Sciences, vol. 5, no. 4, p. 386-388. https://doi.org/10.15414/jmbfs.2016.5.4.386-388
Balážová, Ž., Gálová, Z., Vivodík, M., Chňapek, M., Hornyák Gregáňová, R. 2018. Molecular analysis of buckwheat using gene specific markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 546-552. https://doi.org/10.5219/954
Bošeľová, D., Žiarovská, J. 2016. Direct PCR as the platform of Hedera helix, L. genotypying without the extraction of DNA. Journal of Central European Agriculture, vol. 17, no. 4, p. 941-949. https://doi.org/10.5513/JCEA01/17.4.1795
Dhingani, R. M., Tomar, R. S., Parakhia, M. V., Patel, S. V., Golakiya, B. A. 2012. Analysis of genetic diversity among different Ricinus communis genotypes for macrophomina root rot through RAPD and microsatellite markers. International Journal of Plant Protection, vol. 5, no. 1, p. 1-7.
Dong, H., Wang, C., Li, W., Yang, G. X., Yang, H., Wang, Y. R., Chen, M. H., Li, F. J., Feng, Y., Chen, G. 2012. Castor germplasm diversity analysis using AP-PCR and RMAPD. Academic Periodical of Farm Products Processing, vol. 2012, p. 23- 36.
El-Fiki, A., Adly, M. 2019. Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 100-108. https://doi.org/10.5219/978
FAOSTAT. 2014. Available at: http://www.fao.org/faostat/en/
Foster J. T., Allan, G. J., Chan, A. P., Rabinowicz, P. D., Ravel, J., Jackson, P. J., Keim, P. 2010. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biology, vol. 10, p. 13-18. https://doi.org/10.1186/1471-2229-10-13
Gajeraa, B. B., Kumara, N., Singha, A. S., Punvara, B. S., Ravikirana, R., Subhasha, N., Jadejab, G. C. 2010. Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Industrial Crops and Products, vol. 32, no. 3, p. 491-498. https://doi.org/10.1016/j.indcrop.2010.06.021
Gálová, Z., Vivodík, M., Balážová, Ž., Kuťka Hlozáková, T. 2015. Identification and differentiation of Ricinus communis L. using SSR markers. Potravinarstvo, vol. 9, no. 1, p. 556-561. https://doi.org/10.5219/516
He, S., Xu, W., Li, F., Wang, Y., Liu, A. 2017. Intraspecific DNA methylation polymorphism in the non-edible oilseed plant castor bean. Plant Diversity, vol. 39, no. 5, p. 300-307. https://doi.org/10.1016/j.pld.2017.05.007
Kallamadi, P. R., Ganga Rao Nadigatlab, V. P. R., Mulpuriba, S. 2015. Molecular diversity in castor (Ricinus communis L.). Industrial Crops and Products, vol. 66, p. 271-281. https://doi.org/10.1016/j.indcrop.2014.12.061
Kanti, M., Anjani, K., Usha Kiran, B., Vivekananda, K. 2015. Agro-morphological and molecular diversity in castor (Ricinus communis L.) germplasm collected from Andaman and Nicobar Islands, India. Czech Journal of Genetics and Plant Breeding, vol. 51, p. 96-109. https://doi.org/10.17221/205/2014-CJGPB
Kole, Ch., Rabinowicz, P. 2018. The castor bean genome. Switzerland: Springer Nature, 272 p. ISBN 978-3-319-97279-4. https://doi.org/10.1007/978-3-319-97280-0
Lakhani, H. N., Patel, S. V., Bodar, N. P., Golakiya, B. A. 2015. RAPD analysis of genetic diversity of castor bean (Ricinus communis L.). International Journal of Current Microbioly and Applied Sciences, vol. 4, no. 1, p. 696-703.
Lu, Z., Qi, J. M., Fang, P. P., Su, J. G., Xu, J. T., Tao, A. F. 2010. Genetic diversity and phylogenetic relationship of castor germplasm as revealed by SRAP analysis. Plant Science Journal, vol. 28, no. 1, p. 1-6. https://doi.org/10.3724/SP.J.1142.2010.00001
Machado, E. L., Alves Silva, S., de Sousa Santos, A., Andrade Bastos, L., Nogueira Pestana, C., Souza dos Santos, K., Fortes Ferreira, C., Alves Silva Diamantino, M. S. 2013. Genetic dissimilarity between castor bean cultivars using RAPD markers. Pesquisa Agropecuária Brasileira, vol. 48, no. 3, p. 342-345. https://doi.org/10.1590/S0100-204X2013000300014
Masojć, P., Myśków, B., Milczarski, P. 2001. Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theoretical Applied Genetics, vol. 102, no. 8, p. 1273-1279. https://doi.org/10.1007/s001220000512
Quintero, V., Anaya-López, J. L., Núñez-Colín, C. A., Zamarripa-Colmenero, A., Montes-García, N., Solís-Bonilla, J. L., Aguilar-Rangel, M. R. 2013. Assessing the genetic diversity of castor bean from Chiapas, México using SSR and AFLP markers. Industrial Crops and Products, vol. 41, p. 134-143. https://doi.org/10.1016/j.indcrop.2012.04.033
Ražná, K., Bežo, M., Hlavačková, L., Žiarovská, J., Miko, M., Gažo, J., Habán, M. 2016. MicroRNA (miRNA) in food resources and medicinal plant. Potravinarstvo, vol. 10, no. 1, p. 188-194. https://doi.org/10.5219/583
Reddy, K. P., Nadigatla, V. P. R. G. R., Mulpuri, S. 2015. Molecular diversity in castor (Ricinus communis L.). Industrial Crops and Products, vol. 66, p. 271-281. https://doi.org/10.1016/j.indcrop.2014.12.061
Rukhsar Patel, M. P., Parmar, D. J., Kalola, A. D., Kumar, S. 2017. Morphological and molecular diversity patterns in castor germplasm accessions. Industrial Crops and Products, vol. 97, p. 316-323. https://doi.org/10.1016/j.indcrop.2016.12.036
Simões, K. S., Silva, S. A., Machado, E. L. and Brasileiro, H. S. 2017a. Development of TRAP primers for Ricinus communis L. Genetics and Molecular Research, vol. 16, no. 2, p. 100-113. https://doi.org/10.4238/gmr16029647
Simões, K. S., Silva, S. A., Machado, E. L. and Silva, M. S. 2017b. Genetic divergence in elite castor bean lineages based on TRAP markers. Genetics and Molecular Research, vol. 16, no. 3, p. 100-112. https://doi.org/10.4238/gmr16039776
Tomar Rukam, S., Parakhia, M. V., Kavani, R. H., Dobariya, K. L., Thakkar, J. R., Rathod, V. M., Dhingani, R. M., Golakiya, B. A. 2014. Characterization of castor (Ricinus communis L.) genotypes using different markers. Research Journal of Biotechnology, vol. 9, no. 2, p. 6-13.
Vasconcelos, S., Onofre, A. V. C., Milani, M., Benko-Iseppon, A. M., Brasileiro-Vidal, A. C. 2016. Accessing genetic diversity levels of Brazilian genotypes of castor with AFLP and ISSR markers. Pesquisa Agropecuária Pernambucana, vol. 21, no. 1, p. 24-31. https://doi.org/10.12661/pap.2016.005
Vivodík, M., Balážová, Ž., Gálová, Z., Kuťka Hlozáková, T. 2015a. Differentiation of ricin using RAPD markers. Pakistan Journal of Botany, vol. 47, no. 4, p. 1341-1345.
Vivodík, M., Balážová, Ž., Gálová, Z., Kuťka Hlozáková, T. 2015b. Evaluation of molecular diversity of new castor lines (Ricinus communis L.) using random amplifi ed polymorphic DNA markers. Horticultural Biotechnology Research, vol. 1, p. 1-4.
Vivodík, M., Balážová, Ž., Gálová, Z., Chňapek, M., Petrovičová, L. 2015c. Study of DNA polymorphism of the castor new lines based on RAPD markers. Journal of Microbiology, Biotechnology and Food Sciences, vol. 4 (special issue 2), p. 125-127. https://doi.org/10.15414/jmbfs.2015.4.special2.125-127
Vyhnánek, T., Trojan, V., Štiasna, K., Presinszká, M., Hřivna, L., Mrkvicová, E., Havel, L. 2015. Testing of DNA isolation for the identification of Hemp. Potravinárstvo, vol. 9, no. 1, p. 393-397. https://doi.org/10.5219/509
Wang, Ch., Li, G., Zhang, Z., Peng, M., Shang, Y., Luo, R., Chen, Y. 2013. Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers. Biochemical Systematics and Ecology, vol. 51, p. 301-307. https://doi.org/10.1016/j.bse.2013.09.017
Wang, M. L., Dzievit, M., Chen, Z., Morris, J. B., Norris, J. E., Barkley, N. A., Tonnis, B., Pederson, G. A., Yu, J. 2017. Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the US collection assessed with EST-SSR markers. Genome, vol. 60, no. 3, p. 193-200. https://doi.org/10.1139/gen-2016-0116
Weber, J. L. 1990. Informativeveness of human (dC-dA)n x (dG-dT)n polymorphism. Genomics, vol. 7, no. 4, p. 524-530. https://doi.org/10.1016/0888-7543(90)90195-Z
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, vol. 18, no. 22, p. 6531-6535. https://doi.org/10.1093/nar/18.22.6531
Žiarovská, J., Grygorieva, O., Zeleňáková, L., Bežo, M., Brindza, J. 2015. Identification of sweet chesnut pollen in bee pollen pellet using molecular analysis. Potravinarstvo, vol. 9, no. 1, p. 352-358. https://doi.org/10.5219/497
Žiarovská, J., Kyseľ, M., Cimermanová, R., Knoteková, L. 2017. Effect of DNA extraction method in the Rosa Canina L. identification under different processing temperature. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 190-196. https://doi.org/10.5219/717
Žiarovská, J., Zeleňáková, L., Fernández Cusimamani, E., Kačániová, M. 2018. A thaumatin-like genomic sequence identification in Vitis Vinifera L., stormy wines and musts based on direct PCR. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 226-232. https://doi.org/10.5219/892
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).