Selenium content increasing in the seeds of garden pea after foliar biofortification

Authors

  • Alžbeta Hegedüsová Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra
  • Ivana Mezeyová Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra
  • Ondrej Hegedűs Univerzita J. Selyeho in Komárno, Bratislavská 3322, 945 01 Komárno
  • Janette Musilová Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra
  • Oleg Paulen Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/559

Keywords:

garden pea, foliar biofortification, selenium, chlorophyll a, chlorophyll b

Abstract

Selenium plays an important role as an antioxidant in the prevention of cardiovascular disease. Content of selenium in the crops is constantly in the spotlight of professional public. Vegetables, as an important source of chemo protective substances, have irreplaceable position within the food of plant character. The aim of research work was to solve the Se content increasing in the seeds of garden pea (varieties Premium and Ambassador) through the foliar biofortification of the plants (50 g Se / ha and 100 g Se / ha) and to monitor its effect on production of photosynthetic pigments. In the seeds of fresh garden pea, the chlorophyll a and chlorophyll b content was determined by spectrophotometer depending on a variety and the doses of selenium. In lyophilized seeds there was measured content of selenium by ET-AAS methods. The statistically significant increase of selenium was confirmed with its increasing concentrations in case of both varieties. In the var. Ambassador there was increasing from 0.083 ±0.009 mg.kg-1 DM to 4.935 ±0.598 mg.kg-1 DM (60-fold) and in a var. Premium the values increase from 0.067±0.007 mg.kg-1 DM to 3.248 ±0.289 mg.kg-1 DM (48-fold) after application of 100 g Se / ha. After application of 50 g Se / ha in both varieties of peas there was reported 25-fold increasing in the selenium content in comparison with control. The content of photosynthetic pigments was also increased, or possibly left at level of un-fortificated variant (chla - Ambassador - 50 g Se / ha; chlb - Premium - 100 g Se / ha) by foliar biofortification. Chlorophyll a content was high significantly increased according to used statistical methods in varieties Premium, from the content of 24.527 ±5.156 mg.kg-1 FM to 66.953 ±6.454 mg.kg-1 FM, likewise the content of chlorophyll b from the value of 19.708 ±5.977 mg.kg-1 FM to 37.488 ±6.146 mg.kg-1 FM (after 50 g / ha application).  Foliar biofortification of different vegetable species can provide large-scale intake of minerals with antioxidant properties for human as well as an increase of certain biologically active substances as a result of their synergies

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Arthur, J. R. 2003. Selenium supplementation: does soil supplementation help and why? Proc. Nutr. Soc., vol. 62, no. 2, p. 393-397. https://doi.org/10.1079/PNS2003254 PMid:14506886 DOI: https://doi.org/10.1079/PNS2003254

Aspila, P. 2005 History of selenium supplemented fertilization in Finland. Proceedings, Twenty Years of Selenium Fertilization, 8-9 September 2005. Helsinki, Finland, p. 8-13, ISSN 1458-5081. [cit. 2015-10-05] Available at: http://www.mtt.fi/met/pdf/met69.pdf

Baghour, M., Moreno, D. A., Hernandez, J., Castilla, N., Romero, L. 2002. Influence of thermal regime of soil on the sulfur (S) and selenium (Se) concentration in potato plants. Journal of Environmental Science and Health - part A 6, vol. 37, p. 1075-1085. DOI: https://doi.org/10.1081/ESE-120004524

Bañuelos, B. S., Lin, Z.-Q. Yin, X. 2013. Selenium in the Environment and Human Health, CRC Press 2013, 248 p., Print ISBN: 978-1-138-00017-9, eBook ISBN: 978-0-203-77141-9

Dong, J. Z., Wang, Y., Wang, S. H., Yin, L. P., Xu, G. J., Zheng, C., Lei, C., Zhang, M. Z. 2013. Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. J. Sci. Food Agric., vol. 93, no. 2, p. 310-515. https://doi.org/10.1002/jsfa.5758 PMid:22714393 DOI: https://doi.org/10.1002/jsfa.5758

Ferruzzi, M. G., Blakeslee, J. 2007. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research, vol. 27, p. 1-12. https://doi.org/10.1016/j.nutres.2006.12.003 DOI: https://doi.org/10.1016/j.nutres.2006.12.003

Graham, R. D., Welch, R. M., Saunders, D. A., Ortiz-Monasterio, I., Bouis, H. E., Bonierbale, M., de Haan, S., Burgos, G., Thiele, G., Liria, R., Meisner, C. A., Beebe, S. E., Potts, M. J., Kadian, M., Hobbs, P. R., Gupta, R. K., Twomlow, S. 2007. Nutritious subsistence food systems. Advances in Agronomy, vol. 92, p. 1-74. https://doi.org/10.1016/S0065-2113(04)92001-9 DOI: https://doi.org/10.1016/S0065-2113(04)92001-9

Hegedűs, O., Hegedűsová, A., Šimková, S. 2007. Selén ako biogénny prvok (Selenium as a biogenic compound). Vedecká monografia. Nitra: Univerzita Konštantína Filozofa. 76 p. ISBN 978-80-8094-168-0.

Hegedűsová, A., Mezeyová, I., Timoracká, M., Šlosár, M., Musilová, J., Juríková, T. 2014. Total polyphenol content and antioxidant capacity changes in dependence on chosen garden pea varieties, Potravinarstvo, vol. 9, no. 1, p. 1-8. https://doi.org/10.5219/412 DOI: https://doi.org/10.5219/412

Holben, D. H., Smith, A. M. 1999. The diverse role of selenium within selenoproteins: A review. Journal of the American Dietetic Association, vol. 99, p. 836-843. https://doi.org/10.1016/S0002-8223(99)00198-4 DOI: https://doi.org/10.1016/S0002-8223(99)00198-4

Kreft, I., Mechora S., Germ M., Stibilj V. 2013. Impact of selenium on mitochondrial activity in young Tartary buckwheat plants. Plant Physiology and Biochemistry, vol. 63, p. 196-199, https://doi.org/10.1016/j.plaphy.2012.11.027 DOI: https://doi.org/10.1016/j.plaphy.2012.11.027

Li, H. F., McGrath, S. P., Zhao, F. J. 2008. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist, vol. 178, p. 92-102. https://doi.org/10.1111/j.1469-8137.2007.02343.x DOI: https://doi.org/10.1111/j.1469-8137.2007.02343.x

Poblaciones, M., Rodrigo, S., Santamaría, O. 2013. Evaluation of the Potential of Peas (Pisum sativum L.) to Be Used in Selenium Biofortification Programs Under Mediterranean Conditions, Biol. Trace Elem. Res., vol. 151, p. 132-137, https://doi.org/10.1007/s12011-012-9539-x DOI: https://doi.org/10.1007/s12011-012-9539-x

Priyadarsini, K. I., Singh, B. G., Kunwar, A., Prabhu, P., Jain, V. K. 2013. Selenium in the Environment and Human Health, Chapter 16. Selenium compounds as antioxidants and radioprotectors, Edited by Bañuelos, B. S., Lin, Z . -Q. Yin, X. p. 37-38. https://doi.org/10.1201/b15960-19 DOI: https://doi.org/10.1201/b15960-19

Rayman, M. P. 2012. Selenium and human health. Lancet, vol. 379, p. 1256-1268. https://doi.org/10.1016/S0140-6736(11)61452-9 DOI: https://doi.org/10.1016/S0140-6736(11)61452-9

Rothery, E. 1988: Analytical methods for graphite tube atomizers. Varian Australia Pty Ltd, Mulgrave, Victoria, p. 193.

Smrkolj. P., Germ, M., Kreft, I., Stibilj, V. 2006. Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. J. Exp. Bot. vol. 57, no. 14, p. 3595-3600, https://doi.org/10.1093/jxb/erl109 DOI: https://doi.org/10.1093/jxb/erl109

Timoracká, M., Vollmannová, A. 2010. Determination of flavonoids content in colored peas (Pisum sativum L.) in relation to cultivar's dependence and storage duration under natural conditions. Potravinarstvo, vol. 4, no. 3, p. 58-62. https://doi.org/10.5219/70 DOI: https://doi.org/10.5219/70

Vestník Ministerstva zdravotníctva Slovenskej republiky z 28. apríla 1997, 7-8, Odporúčané výživové dávky pre obyvateľstvo v slovenskej republike (Journal the Ministry of Health of the Slovak Republic from April 28, 7-8, Recommended nutritional intake for the population in the Slovak Republic).

Vogrincic, M., Cuderman, P., Kreft, I., Stibilj, V. 2009. Selenium and its species distribution in above-ground plant parts of selenium enriched buckwheat (Fagopyrum esculentum Moench). Anal. Sci., vol. 29, no. 11, p. 1357-63, http://doi.org/10.2116/analsci.25.1357 DOI: https://doi.org/10.2116/analsci.25.1357

Whanger, P. D. 2004. Selenium and its relationships to cancer: An update. British Journal of Nutrition, vol. 91, no. 1, p. 11-18. https://doi.org/10.1079/BJN20031015 PMid:14748935 DOI: https://doi.org/10.1079/BJN20031015

White, P., Broadley, M. 2009. Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, vol. 182, no. 1, p. 49-84. https://doi.org/10.1111/j.1469-8137.2008.02738.x PMid:19192191 DOI: https://doi.org/10.1111/j.1469-8137.2008.02738.x

Zeng, H., Combs, G. F. 2008. Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. Journal of Nutritional Biochemistry, vol. 19, no. 1, p. 1-7. https://doi.org/10.1016/j.jnutbio.2007.02.005 PMid:17588734 DOI: https://doi.org/10.1016/j.jnutbio.2007.02.005

Downloads

Published

2015-11-27

How to Cite

Hegedüsová, A. ., Mezeyová, I. ., Hegedűs, O. ., Musilová, J. ., & Paulen, O. . (2015). Selenium content increasing in the seeds of garden pea after foliar biofortification. Potravinarstvo Slovak Journal of Food Sciences, 9(1), 435–441. https://doi.org/10.5219/559

Most read articles by the same author(s)

<< < 1 2 3 4