Evaluation of carotenoids, polyphenols content and antioxidant activity in the sea buckthorn fruit
DOI:
https://doi.org/10.5219/551Keywords:
sea buckthorn, sea buckthorn juice, carotenoids, polyphenols, antioxidant activityAbstract
Due to the content of biologically active substances, sea buckthorn (Hippophae rhamnoides L.) has become the object of great interest of both, experts and the general public. It is appreciated particularly for the high content of vitamins and other biologically active substances, not only in berries but also in leaves and bark. The aim of the study was to evaluate the nutritional quality of sea buckthorn juice prepared from different varieties of sea buckthorn based on the content of total carotenoids, polyphenols and antioxidant activity. In this study we used varieties Hergo, Tytti, Vitaminaja, Raisa, Askola, Dorana, Slovan, Leikora, Bojan, Terhi and Masličnaja. Content of different components was quantified using spectrophotometry. The total carotenoids content expressed as β-carotene content in juice ranged from 50.63 mg.100 g-1 DM to 93.63 mg.100 g-1 DM, the highest content was in variety Askola and the lowest one in Terhi. Total polyphenols content determined by Folin-Ciocalteu method ranged from 13.03 mg GAE. dm-3 DM to 25.35 mg GAE. dm-3 DM. The highest content was identified in juice of variety Dorana and the lowest one in Raisa. The antioxidant activity quantified by the FOMO method ranges from 45.11 g AA. dm-3 DM to 108.77 g AA. dm-3 DM. The highest antioxidant activity was determined in juice of Dorana and the lowest in variety Bojan
Downloads
References
Andersson, S. C. 2009. Carotenoids, Tocochromanols and Chlorophylls in Sea Buckthorn Berries (Hippophae rhamnoides) and Rose Hips (Rosa sp.). Swedish University of Agricultural Sciences (Alnarp, Swedish), Available at: http://pub.epsilon.slu.se/2091/1/ThesisAndersson.pdf
Arimboor, R., Venugopalan, W., Sarinkumar, K., Arumughan, C., Sawhney, R. C. 2006. Integrated processing of fresh Indian sea buckthorn (Hippophae rhamnoides) berries and chemical evaluation of products. Journal of the Science of Food and Agriculture, vol. 86, no. 14, p. 2345-2353. https://doi.org/10.1002/jsfa.2620
Bajer, J. 2014. Sea buckthorn. 1st ed. Prague: Mladá fronta, 156 p. ISBN 978-80-204-3385-5.
Bal, M. L., Meda, V., Naik, N. S., Satya, S. 2011. Sea buckthorn berries: A potential source of valulable nutrients for nutraceuticals and cosmocenticals. Food Research International, vol. 44, p. 1718-1727. https://doi.org/10.1016/j.foodres.2011.03.002
Bončíková, D., Tóth, T., Tomáš, J., Suleiman, D., Tóth, J., Slávik, M. 2012. Effective antioxidant phenolic compounds in selected varieties of apples. Potravinarstvo, vol. 6, no. 4, p. 11-15. https://doi.org/10.5219/222
Eccleston, C., Baoru, Y., Tahvonen, R., Kallio, H., Rimbach, G. H., Minihane, A. M. 2002. Effects of an antioxidant-rich juice (Sea buckthorn) on risk factors for coronary heart disease in humans. Journal of Nutritional Biochemistry, vol. 13, no. 6, p. 346-354. https://doi.org/10.1016/S0955-2863(02)00179-1
Ercisli, S., Orhan, E., Ozdemir, O., Sengul, M. 2007. The genotypic effects on the chemici composition and antioxidant aktivity of sea buckthorn (Hippophae rhamnoides L.) berries grown in Turkey. Scientia Horticulturae, vol. 115, no. 1,
p. 27-33. https://doi.org/10.1016/j.scienta.2007.07.004
Guliyev, V. B., Gul, M., Yildirim, A. 2004. Hippophae rhamnoides L.: chromatographic methods to determine chemical composition, used in traditional medicine and pharmacological effect. Journal of chromatography, vol. 812, no. 1/2, p. 291-307. https://doi.org/10.1016/j.jchromb.2004.08.047
Gutzeit, D., Wray, V., Winterhalter, P., Jerz, G. 2007. Preparative isolation and purification of flavonoids and protocatechuic acid from Sea Buckthorn juice concentrate (Hippophaë rhamnoides L. ssp. rhamnoides) by high-speed couter-current chromatography. Chromatographia, vol. 65, no. 1/2, p. 1-7. https://doi.org/10.1365/s10337-006-0105-60009-5893/07/01
Chen, CH., Xu, M. X., Chen, Yang-Yu, Y. M., Wem, Y. F., Zhang, H. 2013. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis). Food Chemistry, vol. 141, no. 3, p. 1573-1579. https://doi.org/10.1016/j.foodchem.2013.03.092
Ivanišová, E., Kačániová, M., Frančáková, H., Blašková, M., Brindza, J. 2015. Sea Buckthorn – importantsource of biologically active compounds. Agrobiodiversity for improving nutrition, health and life quality (Proceedings of scientif works), p. 284-288. ISBN 978-80-552-1379-8
Kuruczek, M., Swiderski, A., Mech-Nowak, A., Król, K. 2012. Antioxidant capacity of crude extracts containing carotenoids from the berries of various cultivars of Sea buckthorn (Hippophae rhamnoides L.). Acta Biochemica Polonica, vol. 59, no. 1, p. 135-137. PMid:4022914
Letchamo, W., Molnar, T., Funk, C. R. 2007. Eco-genetic variations in biological activities of sea berry. Acta Horticulturae (ISHS), vol. 756, p. 229-244. ISSN 0567-7572.
Mőrsel, J.-T., Zubarev, Y., Eagle, D. 2014. Sea buckthorn. Research for a promising crop: A look at recent developments in cultivations, breeding, technology, health and enviroment. Bood – Books and Demand, p. 76-78. ISBN 3732299864.
Prieto, P., Pineda, M., Aguilar., M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, vol. 269, p. 337-341.
Raffo, A., Paoletti, F., Antonelli, M. 2004. Changes in sugar, organic acid, flavonol and carotenoid composition during ripening of berries of three seabuckthorn (Hippophae rhamnoides L.) cultivars. European Food Research and Technology, vol. 219, no. 4, p. 360-368. https://doi.org/10.1007/s00217-004-0984-4
Rop, O., Ercisli, S., Mlcek, J., Jurikova, T., Hoza, I. 2014. Antioxidant and radical scavenging activities in fruits of 6 sea buckthorn (Hippophae rhamnoides L.) cultivars. Turkish Journal of Agriculture and Forestry, vol. 38, no. 2, p. 224-232. https://doi.org/10.3906/tar-1304-86
Rosch, D., Bergmann, H., Knorr, D., Kroh, L. W. 2003. Structure-Antioxidant Efficiency Relationships of Phenolic Compounds and Their Contribution to the Antioxidant Activity of Sea Buckthorn Juice. Journal of Agriculture and Food Chemistry, vol. 51, no. 15, p. 4233-4239. https://doi.org/10.1021/jf0300339
Selvamuthukumaran, M., Khanum, F., Bawa, S. A. 2007. Development of sea buckthorn mixed fruit jelly. International Journal of Food Science and Technology, vol. 42, no. 4, p. 403-410. https://doi.org/10.1111/j.1365-2621.2006.01233.x
Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic – phosphotun gstic acid reagents. American. Journal of Enology and Agriculture, vol. 14, no. 3. p.144-158.
Yang, B., Kallio, H. 2002. Composition and physiological effects of sea buckthorn (Hippophae) lipids. Trends in Food Sciene Technology, vol. 13, no. 5, p. 160-167. https://doi.org/10.1016/S0924-2244(02)00136-X
Yildiz, H., Sengul, M., Celík, F., Ercisli, S., Duralija, B. 2012. Bioactive Content of Sea Buckthorn (Hippophae rhamnoides L.) Berries Turkey. Agriculture Conspectus Scientificus, vol. 77, no. 1, p. 53-55.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).