Identification of sweet chesnut pollen in bee pollen pellet using using molecular analysis.


  • Jana Žiarovská Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Olga Grygorieva Institute of Biodiversity Conservation and Biosafety; Tr. A. Hlinku 2, 949 76 Nitra
  • Lucia Zeleňáková Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Milan Bežo Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Ján Brindza Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra



Castanea sativa, pollen, pollen pellet, identification, PCR


Castanea sativa posses many characteristics that are used by human for different purposes, not only as a part of the food. One of them is the utilization of the sweet chesnut pollen for its pharmacological benefits. Actually, no information about the DNA based identification of the sweet chesnut exist. Here, an identification of Castanea sativa based on the specific DNA fragment amplification is described for the first time. Sweet chesnut identification was performed in the very complex sample of bee pollen pellets that were identified as to contain sweet chesnut pollen grains by morphological analysis. First, bioinformatic analysis was performed to find a Castanea sativa conservative part of galactol synthase gene. BLAST alignment of the CDS of GolS1 gene was performed by BLASTtn against plants nucleotide sequences in the NCBI database to ensure for the specifity or existing nucleotide differences. Then, specific primers were subsequently designed and PCR amplification was performed. All the PCRs have run in duplicates for pollen pellet sample and two independent samples of Castanea sativa pure pollen. Restriction cleavage of the PCR amplified fragment was performed to confirm the specifity of the obtained PCR product with the positive confirmation as the predicted three restriction fragments were obtained that fully correspond by the length to those from virtual clevage. Restriction endonuclease Hpy166II was used in restriction cleavage analysis. Castanea sativa pollen grains were confirmed reliable in multifloral pollen pellet by PCR and this approach has the potential to be used effectively for the authentication purposes of sweet chesnut.


Download data is not yet available.


Metrics Loading ...


Allendorf, F. W., Hohenlohe, P. A., Luikart, G. 2010. Genomics and the future of conservation genetics. Nature Review Genetics, vol. 11, no. 10, p. 697-709. DOI:

Alche´, J. 2012. Characterization of Profilin Polymorphism in Pollen with a Focus on Multifunctionality. PLoS ONE, vol. 7, no. 2, p. 1-13. DOI:

Beyhan, N., Serdar, U. 2009. In vitro pollen germination and tube growth of some European chesnut genotypes (Castanea sativa, Mill.). Fruits, vol. 64, no. 3 p. 157-165. DOI:

Bogdanov, S. 2014. Pollen: Nutrition, Functional Properties, Health: A Review. Availablee at: Book2Review.pdf.

Bryce, M., Drews, O., Schenk, M. F., Menzel, A., Estrella, N., Weichenmeier, I., Smulders, M. J., Buters, J., Ring, J., Görg, A., Behrendt, H., Traidl-Hoffmann, C. 2010. Impact of urbanization on the proteome of birch pollen and its chemotactic activity on human granulocytes. International Archives of Allergy and Immunology, vol. 151, no. 1, p. 46-55. DOI:

Casasoli, M., Mattioni, C., Cherubini, M., Villani, F. 2001. A genetic linkage map of European chestnut (Castanea sativa, Mill.) based on RAPD, ISSR and isozyme markers. Theoretical and Applied Genetics, vol. 102, no. 8, p. 1190-1199. DOI:

D'Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., Liccardi, G., Popov, T., van Cauwenberge, P. 2007. Allergenic pollen and pollen allergy in Europe. Allergy, vol. 62, no. 9, p. 976-990. DOI:

Fatrcová-Šramková, K., Nôžková, J., Kačániová, M., Máriássyová, M., Rovná, K., Stričík, M. 2013. Antioxidant and antimicrobial properties of monofloral bee pollen. Journal of Environmental Science and Health, vol. 48, no. 2, p. 133-138. 10.1080/03601234.2013.727664. DOI:

Feás, X., Vázquez-Tato, M. P., Estevinho, L., Seijas, J. A. and Iglesias, A. 2012. Organic Bee Pollen: Botanical Origin, Nutritional Value, Bioactive Compounds, Antioxidant Activity and Microbiological Quality. Molecules, vol. 17, no. 7, p. 8359-8377. molecules17078359 DOI:

Fineschi, S., Taurchini, D., Villani, F., Vendramin, G. G. 2000. Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Molecular Ecology, vol. 9, no. 10, p. 1495-1503. DOI:

Goulão, L., Valdiviesso, T., Santana, C., Oliveira, C. M., 2001. Comparison between phenetic characterisation using RAPD and ISSR markers and phenotypic data of cultivated chestnut (Castanea sativa, Mill.). Genetic Resources and Crop Evolution, vol. 48, no.4, p. 329-338. DOI:

Hasegawa, Y., Suyama, Y., Seiwa, K. 2009. Pollen donor composition during the early phases of reproduction revealed by DNA genotyping of pollen grains and seeds of Castanea crenata. New Phytologist, vol. 182, no. 4, p. 994-1002. DOI:

Haščík, P., Elimam, I. B. E., Garlík, J., Bobko, M., Kročko, M. 2014. Sensory evaluation of broiler meat after addition Slovak bee pollen in their feed mixture. Potravinarstvo, vol. 7, no. 1, p. 107-110. DOI:

Hrga, I., Mitic, B., Alegro, A., Dragojlovic, D., Stjepanovic, B., Puntaric, D. 2010. Aerobiology of Sweet chesnut (Castanea sativa, Mill.) in North-West Croatia. Collegium Antropologicum, vol. 34, no. 2, p. 501-507.

Christopherson, C., Sninsky, J., Kwok, S. 1997. The effects of internal primer-template mismatches on RT-PCR: HIV-1 model studies. Nucleic Acids Research, vol. 25, no. 3, p. 654-658. DOI:

Isagi, Y., Suyama, Y. 2011. Single-Pollen Genotyping. Springer, 127 p. ISBN 978-4-431-53900-1. DOI:

Kántor, A., Kačániová, M., Petrová, J., Medo, J., Hleba, L., Rovná, K. 2014. Application of RT-PCR for acetobacter species detection in red wine. Journal of Microbiology, Biotechnology and Food Sciences, vol. 3, no. 1, p. 231-234.

Kwok, S., Kellogg, D. E., McKinney, N., Spasic, D., Goda, L., Levenson, C., Sninsky, J. J. 1990. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Research, vol.18, no. 4, p. 999-1005. DOI:

Lusini, I., Velichkov, I., Pollegioni, P., Chiocchini, F., Hinkov, G., Zlatanov, T., Cherubini, M., Mattioni, C. 2014. Estimating the genetic diversity and spatial structure of Bulgarian Castanea sativa populations by SSRs: implications for conservation. Conservation Genetics, vol. 15, no. 2, p. 283-293. DOI:

Longhi, S., Cristofori, A., Gatto, P., Cristofolini, F., Grando, M. S., Gottardini, E. 2009. Biomolecular identification of allergenic pollen: a new perspective for aerobiological monitoring? Annals of allergy, asthma & immunology, vol. 103, no. 6, p. 508-514. DOI:

Mafra, I., Ferreira, I. M. P. L. V. O., Beatriz, M., Oliveira, P. P. 2008. Food authentication by PCR-based methods. European Food Research Technology, vol. 227, no. 3, p. 649-665. DOI:

Milella, L., Martelli, G., Salava, J., Fernández, C. E., Ovesná, J., Greco, I. 2011. Total phenolic content, RAPDs, AFLPs and morphological traits for the analysis of variability in Smallanthus sonchifolius. Genetic Resources and Crop Evolution, vol. 58, no. 4, p. 545-551. DOI:

Oslovičová, V., Simmonds, J. R., Snape, J. W., Gálová, Z., Balážová, Ž., Matušíková, I. 2014. Molecular marker-based characterization of a set of wheat genotypes adapted to Central Europe. Cereal research communications, vol. 42, no. 2, p. 189-198. DOI:

Paffetti, D., Vettori, C., Caramelli, D., Vernesi, C., Lari, M., Paganelli, A., Paule, L., Giannini, R. 2007. Unexpected presence of Fagus orientalis complex in Italy as inferred from 45,000-year-old DNA pollen samples from Venice lagoon. BMC Evolutionary Biology, vol. 7, p. 6. DOI:

Peeters, A. G., Zoler, H. 1988. Long range transport of Castanea sativa pollen. Grana, vol. 27, no. 3, p. 203-207. DOI:

Petrovičová, L., Gálová, Z., Balážová, Ž., Vivodík, M., Wójcik-Jagla, M., Rapacz, M. 2015. Assessment of RAPD polymorphism in rye (Secale cereale L.) genotypes. Journal of Microbiology, Biotechnology and Food Sciences, vol. 4, no. 7, p. 94-97. DOI:

Revák, O., Golian, J., Židek, R., Čapla, J., Zajác, P. 2014. Detection of lupine (Lupinus spp. L.) as a food allergen using three methods: end-point PCR, real-time PCR and ELISA. Potravinarstvo, vol. 8, no. 1, p. 207-215. DOI:

Zhou, L. J., Pei, K. Q., Zhou, B., Ma, K. P. 2007. A molecular approach to species identification of Chenopodiaceae pollen grains in surface soil. American Journal of Botany, vol. 94, no. 3, p. 477-481. DOI:

Trebichalský, A., Kalendar, R., Schulman, A., Stratula, O., Gálová, Z., Balážová, Ž., Chňapek, M. 2013. Detection of genetic relationships among spring and winter triticale (× Triticosecale witt.) and rye cultivars (Secale cereale L.) by using retrotransposon-based markers. Czech journal of genetics and plant breeding, vol. 49, no. 4, p. 171-174. DOI:

Vincze, T., Posfai, J. and Roberts, R. J. 2003. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res., vol. 31, no. 13, p. 3688-3691. DOI:

Židek, R., Bajzík, P., Maršálková, L, Golian, J. 2012. Detekcia falšovania hovädzieho mäsa pomocou Real-Time PCR (Detection of the beef meat adulteration with Real-Time PCR). Maso, vol. 23, p. 15-17.




How to Cite

Žiarovská, J. ., Grygorieva, O. ., Zeleňáková, L. ., Bežo, M. ., & Brindza, J. . (2015). Identification of sweet chesnut pollen in bee pollen pellet using using molecular analysis. Potravinarstvo Slovak Journal of Food Sciences, 9(1), 352–357.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >>