Assessment of antioxidant properties of grain concentrate and oxidant-antioxidant status pigs after its inclusion in ration feeding
DOI:
https://doi.org/10.5219/981Keywords:
fermented grain, wheat, buckwheat, cereal concentrate, antioxidant activity, piglets, stress, oxidant-antioxidant statusAbstract
A grain concentrate was developed for use in bread baking based on whole-ground fermented wheat grain, to enhance that the beneficial properties have fermented wholegrain buckwheat grains in an amount of 20% by weight of the fermented wheat. For the fermentation of grain used dry complex enzyme preparation comprising cellulose, β-glucanase and xylanase (producing Penicillin canescens), dissolved in a buffer based on succinic acid. Under the action of the drug, the micro structure surface of grain was changed. It is established that the character of the change in surface micro structure of wheat and buckwheat grain is the same. The results of the study of the content of vitamin E, flavonoids and antioxidant activity in wheat grains, buckwheat and grain concentrate are obtained by different technologies. The results show that grain concentrates from wheat grain with the addition of 20% buckwheat grains prepared using a solution of enzyme preparation of cellulolytic action in a buffer, based on succinic acid has a high antioxidant activity. As a biological model for studying changes oxidant-antioxidant status of the organism under stress when included in a diet designed grain concentrate, used pigs, that are under stress, caused by weaning them from sows and transportation. Investigated the following parameters oxidant-antioxidant status of the organism pigs: the level of malondialdehyde, ceruloplasmin, vitamins A, E and C in the blood of animals. It is concluded that, to improve the oxidative status of the piglets after weaning period recommended addition of concentrate fodder ration of grain wheat and buckwheat prepared using a solution of an enzyme preparation buffered cellulolytic action on the basis of succinic acid. The developed grain concentrate can be used for making the manufacture of cereal products, including grain bread included in the diet of people who live in conditions of oxidative stress.
Downloads
Metrics
References
Batifoulier, F., Verny, M. A., Chanliaud, E., Demigne C. 2006. Variability of B vitamin concentrations in wheat grain, milling fractions and bread products. European Journal of Agronomy, vol. 25, no. 2, p. 163-169. https://doi.org/10.1016/j.eja.2006.04.009 DOI: https://doi.org/10.1016/j.eja.2006.04.009
Bojňanská, T., Frančáková, H., Chlebo, P., Vollmannová, A. 2009. Rutin content in buckwheat enriched bread and influence of its consumption on plasma total antioxidant status. Czech Journal of Food Sciences, vol. 27, p. 236-240. https://doi.org/10.17221/967-CJFS DOI: https://doi.org/10.17221/967-CJFS
Brindzová, L., Mikusova, L., Takacsova M. 2009. Antioxidant effect of wheat bakery products supplemented with buckwheat, oat and barley beta-D-glucan and their nutritional and sensory evaluation. Proceedings of the 5th International Congress Flour-Bread '09. 7th Croatian Congress of Cereal Technologists, Opatija, Croatia, 21-23 October, p. 485-491.
Buddrick, O., Jones, O. A. N., Cornell, H. J., Small, D. M. 2014. The influence offermentation processes and cereal grains in wholegrain bread on reducing phytate content. Journal of Cereal Science, vol. 59, p. 3-8. https://doi.org/10.1016/j.jcs.2013.11.006 DOI: https://doi.org/10.1016/j.jcs.2013.11.006
Buchet, A., Belloc, C., Leblanc-Maridor M., Merlot, E. 2017. Effects of age and weaning conditions on blood indicators of oxidative status in pigs. PLoS ONE, vol. 12, no. 5, p. e0178487. https://doi.org/10.1371/journal.pone.0178487 DOI: https://doi.org/10.1371/journal.pone.0178487
Cong, H.Q., Yue, W., Yang, Z. H., Qian, Q. H., Chi, H. F. 2009. Effects of succinic acid on the presynaptic GABA release in hippocampal CA1 field. Chinese J. Neuroanatimy, vol. 25, p. 6-10. ISSN: 1000-7547.
Gorelov, I. G., Savina, M. А., Novikov, А. А., Yudina, O. P., Ermolaev, V. I. 2002. Pigs as model for biomedical research. Аgrarnaya Rossiya, vol. 5, р. 45-49. ISSN: 2500-1396.
Gurvitch, A. M., Mutuskina, E. A., Zarzhetsky, Y. V., Trubina, I. E., Avruschenko, M. S., Pylova, S. I., Volkov, A. V., Lazareva, N. A., Stepanichev, M. Y., Onufrievb, M. V., Gulyaeva, N. V. 1997. Prophylaxis of encephalopathies and risk factors of atherogenesis development in the postresuscitation period in rats by means of succinic acid. Resuscitation, vol. 35, p. 165-170. https://doi.org/10.1016/S0300-9572(97)00045-2 DOI: https://doi.org/10.1016/S0300-9572(97)00045-2
Higuchi, M., 2014. Chapter 15 - Antioxidant Properties of Wheat Bran against Oxidative Stress. In Wheat and Rice in Disease Prevention and Health. United States : Academic Press, p. 181-199. ISBN: 978-0-12-401716-0. https://doi.org/10.1016/B978-0-12-401716-0.00015-5 DOI: https://doi.org/10.1016/B978-0-12-401716-0.00015-5
Holasovа, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J., Vavreinova, S. 2002. Buckwheat - the source of antioxidant activity in functional foods. Food Research International, vol. 35, р. 207-211. https://doi.org/10.1016/S0963-9969(01)00185-5 DOI: https://doi.org/10.1016/S0963-9969(01)00185-5
Hung, P. V., Morita, N. 2008. Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem., vol. 109, p. 325-331. DOI: https://doi.org/10.1016/j.foodchem.2007.12.060
Jiang, P., Burczynski, F., Campbell, C., Pierce, G., Austria, J. A., Briggs, C. J. 2007. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Research International, vol. 40, p. 356-364. https://doi.org/10.1016/j.foodres.2006.10.009 DOI: https://doi.org/10.1016/j.foodres.2006.10.009
Jiang, X. R., Zhang, H. J., Mantovani, G., Alborali, G. L., Caputo, J. M., Savoini, G., Dell'Orto, V., Bontempo, V. 2014. The effect of plant polyphenols on the antioxidant defence system of weaned piglets subjected to an Escherichia coli challenge. Journal of Animal and Feed Sciences, vol. 23, р. 324-330. https://doi.org/10.22358/jafs/65668/2014 DOI: https://doi.org/10.22358/jafs/65668/2014
Kapanadze, G. D. 2006. The use of miniature pigs in biomedical experiments. Biomedicina, vol. 1, р. 40-51.
Ke, J., Zhang, G. Q., Wong, S. A., Li, L. B., Yang, Y. H., Wang, J. K. 1983. Effects of succinic acid on immune function. J. Zhengzhou Univ, vol. 3, p. 20-24.
Korobeynikova, E. N. 1989. Modification of determination of lipid peroxidation products in reaction with thiobarbituric acid. Laboratory work, vol. 7. p. 8-10. ISSN: 0023-6748.
Kumar, M. S., Karthikeyan, S., Ramprasad, C., Aruna, P. R., Mathivanan, N., Velmurugan, D., Ganesan, S. 2015. Investigation of phloroglucinol succinic acid dendrimer as antimicrobial agent against Staphylococcus aureus, Escherichia coli and Candida albicans. Nano Biomed. Eng, vol. 7, no. 2, p. 62-74. https://doi.org/10.5101/nbe.v7i2.p62-74 DOI: https://doi.org/10.5101/nbe.v7i2.p62-74
Kuznetsova E., Cherepnina, L., Motyleva, S., Brindza, J. 2016. Redistribution of mineral elements in wheat grain when applying the complex enzyme preparations based on phytase. Potravinarstvo, vol. 10, no. 1, р. 47-53. https://doi.org/10.5219/413 DOI: https://doi.org/10.5219/413
Kuznetsova, E., Motyleva, S., Mertvischeva, M., Zomitev, V., Brindza, J. 2016. Composition and microstructure alteration of triticale grain surface after processing by enzymes of cellulose complex. Potravinarstvo, vol. 10, р. 23-29. https://doi.org/10.5219/411 DOI: https://doi.org/10.5219/411
Li, F. H., Ya, Y., Yang, X. L., Tao, S. Y., Ming, J. 2013. Phenolic profiles and antioxidant activity of buckwheat (Fagopyrum esculentum Möenchand Fagopyrum tartaricum L. Gaerth) hulls, brans and flours. J. Integr. Agric, vol. 12, p. 1684-1693. https://doi.org/10.1016/S2095-3119(13)60371-8 DOI: https://doi.org/10.1016/S2095-3119(13)60371-8
Lin, L. Y., Liu, H. M., Yu, Y. W., Lin, S. D., Mau, J. L. 2009. Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chemistry, vol. 112, p. 987-991. https://doi.org/10.1016/j.foodchem.2008.07.022 DOI: https://doi.org/10.1016/j.foodchem.2008.07.022
Liyana-Pathirana, C. M., Shadidi, F. 2006. Importance of insoluble-bound phenolics to antioxidant properties of wheat. J. Agric. Food Chem., vol. 54, p. 1256-1264. https://doi.org/10.1021/jf052556h DOI: https://doi.org/10.1021/jf052556h
Ng, W. K., Koh, C. B., Teoh, C. Y., Romano, N. 2015. Farm-raised tiger shrimp, Penaeus monodon, fed commercial feeds with added organic acids showed enhanced nutrient utilization, immune response and resistance to vibrio harveyi challenge. Aquaculture, vol. 449, p. 69-77. https://doi.org/10.1016/j.aquaculture.2015.02.006 DOI: https://doi.org/10.1016/j.aquaculture.2015.02.006
Ragaee, S., Guzar, I., Dhull N., Seetharaman, K. 2011. Seetharaman Effects of fiber addition on antioxidant capacity and nutritional quality of wheat bread. LWT - Food Science and Technology, vol. 44, p. 2147-2153. DOI: https://doi.org/10.1016/j.lwt.2011.06.016
Raghavendra, K. R., Renuka, N., Kumar, K. A., Shashikanth S. 2017. An Accessible Route for the Synthesis of Novel Lignan Derivatives and Their Biological Evaluation. Pharmaceutikal chemistry journal vol. 51, no. 8, р. 661-669. https://doi.org/10.1007/s11094-017-1671-7 DOI: https://doi.org/10.1007/s11094-017-1671-7
Ravin, H.A. 1961. Improved colometric enzymatic ceruloplasmin assay. Journal of laboratory and clinical medicine, vol. 58, p. 161-168.
Rey, A. I., López-Bote, C. J., Litta, G. 2017. Effects of dietary vitamin E (DL-α-tocopheryl acetate) and vitamin C combination on piglets oxidative status and immune response at weaning. Journal of Animal and Feed Sciences, vol. 26, no. 3, р. 226-235. https://doi.org/10.22358/jafs/76595/2017 DOI: https://doi.org/10.22358/jafs/76595/2017
Safonova, O. A., Popova, T. N., Slivkin, A. I., Talmi, Y. 2015. Effects of a Preparation Containing Pantogam, Succinic Acid, and Chitosan on Activities of the Glutathione System and NADPH-Generating Enzymes in Rat Tissues under Conditions of Cerebral Ischemia/Reperfusion. Bulletin of Experimental Biology and Medicine, vol. 159, no. 2, p. 221-224. https://doi.org/10.1007/s10517-015-2927-4 DOI: https://doi.org/10.1007/s10517-015-2927-4
Schatz, R. A., Lal, H.. 1980. Protection against hyperbaric oxygen toxicity by pargyline, succinic acid and ascorbic acid: Role of brain GABA and brain ammonia. Brain Research Bulletin, vol. 5, no. 2, p. 781-788. https://doi.org/10.1016/0361-9230(80)90130-6 DOI: https://doi.org/10.1016/0361-9230(80)90130-6
Silva, В. A., Ferreres, F., Malva, J. O., Dias, A. C. P. 2005. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chemistry, vol. 90, no. 1-2, p. 157-167. https://doi.org/10.1016/j.foodchem.2004.03.049 DOI: https://doi.org/10.1016/j.foodchem.2004.03.049
Sinitsyna, O. A., Bukhtoyarov, F. E., Gusakov, A. V., Sinitcyn, A. P., Okunev, O. N., Bekkarevitch, A .O., Vinetsky, Y. U. P. 2003. Isolation and properties of major components of Penicillium canescens extracellular enzyme complex. Biochemistry, vol. 68, no 11, p. 1200-1209. https://doi.org/10.1023/B:BIRY.0000009134.48246.7e DOI: https://doi.org/10.1023/B:BIRY.0000009134.48246.7e
Slavin, J., Marquart, L., Jacobs, D. 2000. Consumption of whole-grain foods and decreased risk of cancer: proposed mechanisms. Cereal Food World, vol. 45, p. 54-58.
Tang, X. L., Liu, J. X., LI, P., Dong, W., Lei, L., Zheng, Y. Q., Hou J. C. 2013. Protective effect of succinic acid on primary cardiomyocyte hypoxia/reoxygenation injury. China J. Chinese Material Med, vol. 38, no. 21, p. 41-45. https://doi.org/10.4268/cjcmm20132127 DOI: https://doi.org/10.4268/cjcmm20132127
Truswell, A. S. 2002. Cereal grains and coronary heart disease. Eur. J. Clin. Nutr., vol. 56, no. 1, p. 11-14. https://doi.org/10.1038/sj.ejcn.1601283 DOI: https://doi.org/10.1038/sj.ejcn.1601283
Verma, B., Hucl, P., Chibbar, R. N. 2009. Phenolic acid composition and antioxidant capacity of acid and alkali hydrolyzed wheat bran fractions. Food Chem, vol. 116, p. 947-954. https://doi.org/10.1016/j.foodchem.2009.03.060 DOI: https://doi.org/10.1016/j.foodchem.2009.03.060
Vitaglione, P., Napolitano, A., Fogliano, V. 2008. Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science and Technology, vol. 19, no. 9, p. 451-463. https://doi.org/10.1016/j.tifs.2008.02.005 DOI: https://doi.org/10.1016/j.tifs.2008.02.005
Yin, J., Wu, M. M., Xiao R. W. K., Duan J. L., Yang, G., Li, T. J., Yin, Y. L. 2014. Development of an antioxidant system after early weaning in piglets. Journal of Animal Science, vol. 92, no. 9, р. 612-619. https://doi.org/10.2527/jas.2013-6986 DOI: https://doi.org/10.2527/jas.2013-6986
Zadnipryany, I. V., Tretiakova, O. S., Kubyshkin, A. V., Sataieva, T. P. 2016. Cardioprotective effect of native antihypoxants in experimental cobalt cardiomyopathy. Bulletin of Siberian medicine, vol. 15, no. 3, p. 33-40. https://doi.org/10.20538/1682-0363-2016-3-33-40 DOI: https://doi.org/10.20538/1682-0363-2016-3-33-40
Zhu, L. H., Zhao, K. L., Chen, X. L., Xu, J. X. 2012. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. Journal of Animal Science, vol. 90, no. 8, p. 2581-2589. https://doi.org/10.2527/jas.2012-4444 DOI: https://doi.org/10.2527/jas.2011-4444
Zielińska, D., Turemko, M., Kwiatkowski, J., Zieliński, H. 2012. Evaluation of flavonoid contents and antioxidant capacity of the aerial parts of common and tartary buckwheat plants. Molecules, vol. 17, no. 8, p. 9668-9682. https://doi.org/10.3390/molecules17089668 DOI: https://doi.org/10.3390/molecules17089668
Downloads
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.