Analysis of the hard rennet cheese microbiota at different stages of the technological process
DOI:
https://doi.org/10.5219/2011Keywords:
MALDI-TOF, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, hard rennet cheeseAbstract
The purpose of the research was microbiological screening using MALDI-TOF technology starting from bulk raw milk to the finished dairy product and analyzing microorganisms that were being detected during the technological process of production of Ukrainskyi hard rennet cheese and which were clinically significant for human and animal health. Methods. Microbial detection was performed by accumulation and inoculation using the sector inoculation method on differential media for aerobic and anaerobic microorganisms with further MALDI-TOF identification. Sampling was carried out at 7 stages of cheese production: starting from bulk raw milk to bactofugation, after bactofugation to a mixture normalized in fat content, a pasteurized mixture, a mixture prepared for coagulation, cheese after pressing, and cheese after maturation. Microflora studies were repeated three times, with 405 samples examined. Microbiological studies of Ukrainskyi hard rennet cheese using Maldi TOF technology starting from raw materials to finished dairy products showed the presence of microorganisms at all stages of production – from bulk milk to the finished product. During the entire period of experiments, 43 species of various microorganisms have been isolated and identified. However, the number and individual types of microorganisms differed at different stages of production. Some microorganisms that have been isolated in raw milk are also found in the final product, such as Acinetobacter baumannii and Escherichia coli. In total, 18 types of microorganisms have been isolated and identified in the final product – hard rennet cheese, including Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli, which are of particular concern in the context of safe consumption of this cheese.
Downloads
Metrics
References
Mikulec, N., Špoljarić, J., Plavljanić, D., Lovrić, N., Oštarić, F., GajdošKljusurić, J., Sarim, K. Mohd., Zdolec, N., &Kazazić, S. (2024). MALDI-TOF Mass Spectrometry-Based Identification of Aerobic Mesophilic Bacteria in Raw Unpreserved and Preserved Milk. In Processes (Vol. 12, Issue 4, p. 731). MDPI AG. https://doi.org/10.3390/pr12040731 DOI: https://doi.org/10.3390/pr12040731
Hahne, J., Kloster, T., Rathmann, S., Weber, M., & Lipski, A. (2018). Isolation and characterization of Corynebacterium spp. from bulk tank raw cow’s milk of different dairy farms in Germany. In L. A. Maldonado Manjarrez (Ed.), PLOS ONE (Vol. 13, Issue 4, p. e0194365). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0194365 DOI: https://doi.org/10.1371/journal.pone.0194365
Yuan, H., Han, S., Zhang, S., Xue, Y., Zhang, Y., Lu, H., & Wang, S. (2022). Microbial Properties of Raw Milk throughout the Year and Their Relationships to Quality Parameters. In Foods (Vol. 11, Issue 19, p. 3077). MDPI AG. https://doi.org/10.3390/foods11193077 DOI: https://doi.org/10.3390/foods11193077
Borena, B. M., Gurmessa, F. T., Gebremedhin, E. Z., Sarba, E. J., & Marami, L. M. (2023). Staphylococcus aureus in cow milk and milk products in Ambo and Bako towns, Oromia, Ethiopia: prevalence, associated risk factors, hygienic quality, and antibiogram. In International Microbiology (Vol. 26, Issue 3, pp. 513–527). Springer Science and Business Media LLC. https://doi.org/10.1007/s10123-022-00317-x DOI: https://doi.org/10.1007/s10123-022-00317-x
Gajewska, J., Chajęcka-Wierzchowska, W., Byczkowska-Rostkowska, Z., & Saki, M. (2023). Biofilm Formation Capacity and Presence of Virulence Determinants among Enterococcus Species from Milk and Raw Milk Cheeses. In Life (Vol. 13, Issue 2, p. 495). MDPI AG. https://doi.org/10.3390/life13020495 DOI: https://doi.org/10.3390/life13020495
Tamma, P. D., Aitken, S. L., Bonomo, R. A., Mathers, A. J., van Duin, D., & Clancy, C. J. (2021). Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase–Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. In Clinical Infectious Diseases (Vol. 74, Issue 12, pp. 2089–2114). Oxford University Press (OUP). https://doi.org/10.1093/cid/ciab1013 DOI: https://doi.org/10.1093/cid/ciab1013
Enciso-Martínez, Y., González-Aguilar, G. A., Martínez-Téllez, M. A., González-Pérez, C. J., Valencia-Rivera, D. E., Barrios-Villa, E., & Ayala-Zavala, J. F. (2022). Relevance of tracking the diversity of Escherichia coli pathotypes to reinforce food safety. In International Journal of Food Microbiology (Vol. 374, p. 109736). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2022.109736 DOI: https://doi.org/10.1016/j.ijfoodmicro.2022.109736
Crippa, C., Pasquali, F., Rodrigues, C., De Cesare, A., Lucchi, A., Gambi, L., Manfreda, G., Brisse, S., & Palma, F. (2023). Genomic features of Klebsiella isolated from artisanal ready-to-eat food production facilities. In Scientific Reports (Vol. 13, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-023-37821-7 DOI: https://doi.org/10.1038/s41598-023-37821-7
Zheng, Z., Gorden, P. J., Xia, X., Zheng, Y., & Li, G. (2021). Whole‐genome analysis of Klebsiella pneumoniae from bovine mastitis milk in the U.S. In Environmental Microbiology (Vol. 24, Issue 3, pp. 1183–1199). Wiley. https://doi.org/10.1111/1462-2920.15721 DOI: https://doi.org/10.1111/1462-2920.15721
Ágredo-Campos, Á. S., Fernández-Silva, J. A., & Ramírez-Vásquez, N. F. (2023). Staphylococcus aureus, Escherichia coli, and Klebsiella spp. Prevalence in bulk tank milk of Colombian herds and associated milking practices. In Veterinary World (pp. 869–881). Veterinary World. https://doi.org/10.14202/vetworld.2023.869-881 DOI: https://doi.org/10.14202/vetworld.2023.869-881
Bonardi, S., Cabassi, C. S., Fiaccadori, E., Cavirani, S., Parisi, A., Bacci, C., Lamperti, L., Rega, M., Conter, M., Marra, F., Crippa, C., Gambi, L., Spadini, C., Iannarelli, M., Paladini, C., Filippin, N., & Pasquali, F. (2023). Detection of carbapenemase- and ESBL-producing Klebsiella pneumoniae from bovine bulk milk and comparison with clinical human isolates in Italy. In International Journal of Food Microbiology (Vol. 387, p. 110049). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2022.110049 DOI: https://doi.org/10.1016/j.ijfoodmicro.2022.110049
Song, J., Xiang, W., Wang, Q., Yin, J., Tian, T., Yang, Q., Zhang, M., Ge, G., Li, J., Diao, N., Liu, F., Shi, K., Cai, R., Du, R., & Gong, Q. (2023). Prevalence and risk factors of Klebsiella spp. in milk samples from dairy cows with mastitis—A global systematic review. In Frontiers in Veterinary Science (Vol. 10). Frontiers Media SA. https://doi.org/10.3389/fvets.2023.1143257 DOI: https://doi.org/10.3389/fvets.2023.1143257
Song, J., Xiang, W., Wang, Q., Yin, J., Tian, T., Yang, Q., Zhang, M., Ge, G., Li, J., Diao, N., Liu, F., Shi, K., Cai, R., Du, R., & Gong, Q. (2023). Prevalence and risk factors of Klebsiella spp. in milk samples from dairy cows with mastitis—A global systematic review. In Frontiers in Veterinary Science (Vol. 10). Frontiers Media SA. https://doi.org/10.3389/fvets.2023.1143257 DOI: https://doi.org/10.3389/fvets.2023.1143257
Schukken, Y., Chuff, M., Moroni, P., Gurjar, A., Santisteban, C., Welcome, F., &Zadoks, R. (2012). The “Other” Gram-Negative Bacteria in Mastitis. In Veterinary Clinics of North America: Food Animal Practice (Vol. 28, Issue 2, pp. 239–256). Elsevier BV. https://doi.org/10.1016/j.cvfa.2012.04.001 DOI: https://doi.org/10.1016/j.cvfa.2012.04.001
Gao, J., Li, S., Zhang, J., Zhou, Y., Xu, S., Barkema, H. W., Nobrega, D. B., Zhu, C., & Han, B. (2019). Prevalence of Potential Virulence Genes in Klebsiella spp. Isolated from Cows with Clinical Mastitis on Large Chinese Dairy Farms. In Foodborne Pathogens and Disease (Vol. 16, Issue 12, pp. 856–863). Mary Ann Liebert Inc. https://doi.org/10.1089/fpd.2019.2657 DOI: https://doi.org/10.1089/fpd.2019.2657
Zhu, J., Wang, T., Chen, L., & Du, H. (2021). Virulence Factors in Hypervirulent Klebsiella pneumoniae. In Frontiers in Microbiology (Vol. 12). Frontiers Media SA. https://doi.org/10.3389/fmicb.2021.642484 DOI: https://doi.org/10.3389/fmicb.2021.642484
Liu, J., Liu, Y., Li, C., Peng, W., Jiang, C., Peng, S., & Fu, L. (2024). Characteristics of Klebsiella pneumoniae pyogenic liver abscess from 2010–2021 in a tertiary teaching hospital in South China. In Journal of Global Antimicrobial Resistance (Vol. 36, pp. 210–216). Elsevier BV. https://doi.org/10.1016/j.jgar.2023.12.024 DOI: https://doi.org/10.1016/j.jgar.2023.12.024
Euler, C. W., Raz, A., Hernandez, A., Serrano, A., Xu, S., Andersson, M., Zou, G., Zhang, Y., Fischetti, V. A., & Li, J. (2023). PlyKp104, a Novel Phage Lysin for the Treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Other Gram-Negative ESKAPE Pathogens. In Antimicrobial Agents and Chemotherapy (Vol. 67, Issue 5). American Society for Microbiology. https://doi.org/10.1128/aac.01519-22 DOI: https://doi.org/10.1128/aac.01519-22
Ashurst, J. V., & Dawson, A. (2023). Klebsiella Pneumonia. In-Stat Pearls. Stat Pearls Publishing.
Prestinaci, F., Pezzotti, P., &Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. In Pathogens and Global Health (Vol. 109, Issue 7, pp. 309–318). Informa UK Limited. https://doi.org/10.1179/2047773215y.0000000030 DOI: https://doi.org/10.1179/2047773215Y.0000000030
Cao, H., Yan, Y., Wang, L., Dong, L., Pang, X., Tang, S., Li, A., Xiang, A., Zhang, L., & Zheng, B. (2021). High-Throughput Sequencing Reveals Bacterial Diversity in Raw Milk Production Environment and Production Chain in Tangshan City of China. In Food Science of Animal Resources (Vol. 41, Issue 3, pp. 452–467). Korean Society for Food Science of Animal Resources. https://doi.org/10.5851/kosfa.2021.e10 DOI: https://doi.org/10.5851/kosfa.2021.e10
Rangel, K., & De-Simone, S. G. (2024). Treatment and Management of Acinetobacter Pneumonia: Lessons Learned from Recent World Event. In Infection and Drug Resistance: Vol. Volume 17 (pp. 507–529). Informa UK Limited. https://doi.org/10.2147/idr.s431525 DOI: https://doi.org/10.2147/IDR.S431525
Mohamed, H. M. A., Abd-Elhafeez, H. H., Al-Jabr, O. A., & El-Zamkan, M. A. (2022). Characterization of Acinetobacter baumannii Isolated from Raw Milk. In Biology (Vol. 11, Issue 12, p. 1845). MDPI AG. https://doi.org/10.3390/biology11121845 DOI: https://doi.org/10.3390/biology11121845
Amorim, A. M. B. de, & Nascimento, J. dos S. (2017). Acinetobacter: an underrated foodborne pathogen? In The Journal of Infection in Developing Countries (Vol. 11, Issue 02, pp. 111–114). Journal of Infection in Developing Countries. https://doi.org/10.3855/jidc.8418 DOI: https://doi.org/10.3855/jidc.8418
Yoon, S., & Lee, Y. J. (2022). Molecular characteristics of Escherichia coli from bulk tank milk in Korea. In Journal of Veterinary Science (Vol. 23, Issue 1). The Korean Society of Veterinary Science. https://doi.org/10.4142/jvs.21084 DOI: https://doi.org/10.4142/jvs.21084
Yihunie, F. B., Belete, M. A., Fentahun, G., & Dubie, T. (2024). Molecular detection and antibiogram of Shiga toxin-producing Escherichia coli (STEC) from raw milk in and around Bahir Dar town dairy farms, Ethiopia. In Heliyon (Vol. 10, Issue 7, p. e28839). Elsevier BV. https://doi.org/10.1016/j.heliyon.2024.e28839 DOI: https://doi.org/10.1016/j.heliyon.2024.e28839
Shanina, O., Minchenko, S., Gavrysh, T., Sukhenko, Y., Sukhenko, V., Vasyliv, V., Miedviedieva, N., Mushtruk, M., Stechyshyn, M., & Rozbytska, T. (2020). Substantiation of basic stages of gluten-free steamed bread production and its influence on quality of finished product. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 189–201). HACCP Consulting. https://doi.org/10.5219/1200 DOI: https://doi.org/10.5219/1200
Rosario, A. I. L. S., Castro, V. S., Santos, L. F., Lisboa, R. C., Vallim, D. C., Silva, M. C. A., Figueiredo, E. E. S., Conte-Junior, C. A., & Costa, M. P. (2021). Shiga toxin-producing Escherichia coli isolated from pasteurized dairy products from Bahia, Brazil. In Journal of Dairy Science (Vol. 104, Issue 6, pp. 6535–6547). American Dairy Science Association. https://doi.org/10.3168/jds.2020-19511 DOI: https://doi.org/10.3168/jds.2020-19511
Machado, M. A. M., Castro, V. S., da Cunha-Neto, A., Vallim, D. C., Pereira, R. de C. L., dos Reis, J. O., de Almeida, P. V., Galvan, D., Conte-Junior, C. A., & Figueiredo, E. E. de S. (2023). Heat-resistant and biofilm-forming Escherichia coli in pasteurized milk from Brazil. In Brazilian Journal of Microbiology (Vol. 54, Issue 2, pp. 1035–1046). Springer Science and Business Media LLC. https://doi.org/10.1007/s42770-023-00920-8 DOI: https://doi.org/10.1007/s42770-023-00920-8
Birlutiu, V., Birlutiu, R.-M., &Dobritoiu, E. S. (2023). Lelliottiaamnigena and Pseudomonas putida Coinfection Associated with a Critical SARS-CoV-2 Infection: A Case Report. In Microorganisms (Vol. 11, Issue 9, p. 2143). MDPI AG. https://doi.org/10.3390/microorganisms11092143
Sharan, M., Vijay, D., Dhaka, P., Bedi, J. S., & Gill, J. P. S. (2022). Biofilms as a microbial hazard in the food industry: A scoping review. In Journal of Applied Microbiology (Vol. 133, Issue 4, pp. 2210–2234). Oxford University Press (OUP). https://doi.org/10.1111/jam.15766 DOI: https://doi.org/10.1111/jam.15766
Tirloni, E., Stella, S., Celandroni, F., Mazzantini, D., Bernardi, C., &Ghelardi, E. (2022). Bacillus cereus in Dairy Products and Production Plants. In Foods (Vol. 11, Issue 17, p. 2572). MDPI AG. https://doi.org/10.3390/foods11172572
PV.BLS 7.2–08.15. Microbiological screening of food products, feed, and water PV.BLS 7.2-09/08 Study of biological fluids by microbiological method (semi-quantitative method).
RI.BLS 7.2-09.13 Work with MALDI-TOF Bruker Biotyper
PV.BLS 7.2-09/10 Isolation of pathogenic/conditionally pathogenic bacteria with identification by MALDI-TOF
DSTU ISO 16140:2006 Microbiology of food products and animal feed. Alternative methods validation protocol
Valentiny, C., Dirschmid, H., &Lhotta, K. (2015). Streptococcus uberis and Staphylococcus aureus forefoot and bloodstream co-infection in a hemodialysis patient: a case report. In BMC Nephrology (Vol. 16, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12882-015-0069-6 DOI: https://doi.org/10.1186/s12882-015-0069-6
Zheplinska, M., Mushtruk, M., Shablii, L., Shynkaruk, V., Slobodyanyuk, N., Rudyk, Y., Chumachenko, I., Marchyshyna, Y., Omelian, A., & Kharsika, I. (2022). Development and shelf-life assessment of soft-drink with honey. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 114–126). HACCP Consulting. https://doi.org/10.5219/1738 DOI: https://doi.org/10.5219/1738
Soman, R., & Eashwernath, R. (2020). Bacteremia due to Streptococcus gallolyticus: A Name with an Ominous Significance? In Indian Journal of Critical Care Medicine (Vol. 24, Issue 10, pp. 901–902). Jaypee Brothers Medical Publishing. https://doi.org/10.5005/jp-journals-10071-23623 DOI: https://doi.org/10.5005/jp-journals-10071-23623
Birlutiu, V., Birlutiu, R.-M., &Dobritoiu, E. S. (2023). Lelliottiaamnigena and Pseudomonas putida Coinfection Associated with a Critical SARS-CoV-2 Infection: A Case Report. In Microorganisms (Vol. 11, Issue 9, p. 2143). MDPI AG. https://doi.org/10.3390/microorganisms11092143 DOI: https://doi.org/10.3390/microorganisms11092143
Tirloni, E., Stella, S., Celandroni, F., Mazzantini, D., Bernardi, C., &Ghelardi, E. (2022). Bacillus cereus in Dairy Products and Production Plants. In Foods (Vol. 11, Issue 17, p. 2572). MDPI AG. https://doi.org/10.3390/foods11172572 DOI: https://doi.org/10.3390/foods11172572
Lázaro-Díez, M., Navascués-Lejarza, T., Remuzgo-Martínez, S., Navas, J., Icardo, J. M., Acosta, F., Martínez-Martínez, L., & Ramos-Vivas, J. (2016). Acinetobacter baumannii and A. pittii clinical isolates lack adherence and cytotoxicity to lung epithelial cells in vitro. In Microbes and Infection (Vol. 18, Issue 9, pp. 559–564). Elsevier BV. https://doi.org/10.1016/j.micinf.2016.05.002 DOI: https://doi.org/10.1016/j.micinf.2016.05.002
Chooduang, S., Surya, W., Torres, J., Boonserm, P. (2018). An aromatic cluster in LysinibacillussphaericusBinB is involved in toxicity and proper in-membrane folding. In Archives of Biochemistry and Biophysics (Vol. 660, pp. 29–35). Elsevier BV. https://doi.org/10.1016/j.abb.2018.10.006 DOI: https://doi.org/10.1016/j.abb.2018.10.006
Dawadi, P., Odari, R., Poudel, R. C., Pokhrel, L. R., & Bhatt, L. R. (2023). Isolation of Lactococcus garvieae NEP21 from raw cow (Bos indicus) milk in Nepal. In Science of The Total Environment (Vol. 861, p. 160641). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2022.160641 DOI: https://doi.org/10.1016/j.scitotenv.2022.160641
Adamchuk, L., Sukhenko, V., Akulonok, O., Bilotserkivets, T., Vyshniak, V., Lisohurska, D., Lisohurska, O., Slobodyanyuk, N., Shanina, O., & Galyasnyj, I. (2020). Methods for determining the botanical origin of honey. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 483–493). HACCP Consulting. https://doi.org/10.5219/1386 DOI: https://doi.org/10.5219/1386
Mohamed, H. M. A., Abd-Elhafeez, H. H., Al-Jabr, O. A., & El-Zamkan, M. A. (2022). Characterization of Acinetobacter baumannii Isolated from Raw Milk. In Biology (Vol. 11, Issue 12, p. 1845). MDPI AG. https://doi.org/10.3390/biology11121845 DOI: https://doi.org/10.3390/biology11121845
Rogoskii, I., Mushtruk, M., Titova, L., Snezhko, O., Rogach, S., Blesnyuk, O., Rosamaha, Y., Zubok, T., Yeremenko, O., & Nadtochiy, O. (2020). Engineering management of starter cultures in study of temperature of fermentation of sour-milk drink with apiproducts. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 1047–1054). HACCP Consulting. https://doi.org/10.5219/1437 DOI: https://doi.org/10.5219/1437
Pati, N. B., Doijad, S. P., Schultze, T., Mannala, G. K., Yao, Y., Jaiswal, S., Ryan, D., Suar, M., Gwozdzinski, K., Bunk, B., Mraheil, M. A., Marahiel, M. A., Hegemann, J. D., Spröer, C., Goesmann, A., Falgenhauer, L., Hain, T., Imirzalioglu, C., Mshana, S. E., … Chakraborty, T. (2018). Enterobacter bugandensis: a novel enterobacterial species associated with severe clinical infection. In Scientific Reports (Vol. 8, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-018-23069-z DOI: https://doi.org/10.1038/s41598-018-23069-z
Paikra, S. K., Panda, J., Sahoo, G., & Mishra, M. (2022). Characterization of exopolysaccharide derived from Enterobacter ludwigii and its possible role as an emulsifier. In 3 Biotech (Vol. 12, Issue 9). Springer Science and Business Media LLC. https://doi.org/10.1007/s13205-022-03279-z DOI: https://doi.org/10.1007/s13205-022-03279-z
Różańska, H., Lewtak-Piłat, A., Kubajka, M., & Weiner, M. (2019). Occurrence of enterococci in mastitic cow’s milk and their antimicrobial resistance. In Journal of Veterinary Research (Vol. 63, Issue 1, pp. 93–97). Walter de Gruyter GmbH. https://doi.org/10.2478/jvetres-2019-0014 DOI: https://doi.org/10.2478/jvetres-2019-0014
Malta, R. C. R., Ramos, G. L. de P. A., & Nascimento, J. dos S. (2020). From food to hospital: we need to talk about Acinetobacter spp. In Germs (Vol. 10, Issue 3, pp. 210–217). AsociatiaPentruCrestereaVizibilitatiiCercetariiStiintifice (ACVCS). https://doi.org/10.18683/germs.2020.1 DOI: https://doi.org/10.18683/germs.2020.1207
Soman, R., &Eashwernath, R. (2020). Bacteremia due to Streptococcus gallolyticus: A Name with an Ominous Significance? In Indian Journal of Critical Care Medicine (Vol. 24, Issue 10, pp. 901–902). Jaypee Brothers Medical Publishing. https://doi.org/10.5005/jp-journals-10071-23623 DOI: https://doi.org/10.5005/jp-journals-10071-23623
Birlutiu, V., Birlutiu, R.-M., &Dobritoiu, E. S. (2023). Lelliottiaamnigena and Pseudomonas putida Coinfection Associated with a Critical SARS-CoV-2 Infection: A Case Report. In Microorganisms (Vol. 11, Issue 9, p. 2143). MDPI AG. https://doi.org/10.3390/microorganisms11092143 DOI: https://doi.org/10.3390/microorganisms11092143
Bal’-Prylypko, L. V., Derevyanko, L. P., Slobodyanyuk, N. M., Starkova, E. R., & Androshchiuk, O. S. (2018). Using of the Ampullaria glauca snails’ caviar for correction of the effects of the ionizing radiation exposure in small dose. In Nuclear Physics and Atomic Energy (Vol. 19, Issue 2, pp. 159–165). National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications). https://doi.org/10.15407/jnpae2018.02.159 DOI: https://doi.org/10.15407/jnpae2018.02.159
Tirloni, E., Stella, S., Celandroni, F., Mazzantini, D., Bernardi, C., &Ghelardi, E. (2022). Bacillus cereus in Dairy Products and Production Plants. In Foods (Vol. 11, Issue 17, p. 2572). MDPI AG. https://doi.org/10.3390/foods11172572 DOI: https://doi.org/10.3390/foods11172572
Patel, N., Prasanna, V., Rana, R., &Daunaria, D. (2022). Bacteremia due to carbapenem-resistant Citrobacter braakii. In Journal of Family Medicine and Primary Care (Vol. 11, Issue 6, p. 3395). Medknow. https://doi.org/10.4103/jfmpc.jfmpc_1685_21 DOI: https://doi.org/10.4103/jfmpc.jfmpc_1685_21
Lee, C.-R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C.-J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. In Frontiers in Cellular and Infection Microbiology (Vol. 7). Frontiers Media SA. https://doi.org/10.3389/fcimb.2017.00055 DOI: https://doi.org/10.3389/fcimb.2017.00055
Iakubchak, O., Adamenko, L., Taran, T., Sydorenko, O., Rozbytska, T., Tverezovska, N., Israelian, V., Holembovska, N., Menchynska, A., &Ivaniuta, A. (2023). The study of the cytotoxic effect of disinfectants. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 17, pp. 82–95). HACCP Consulting. https://doi.org/10.5219/1822 DOI: https://doi.org/10.5219/1822
Palamarchuk, I., Zozulyak, O., Mushtruk, M., Petrychenko, I., Slobodyanyuk, N., Domin, О., Udodov, S., Semenova, O., Karpovych, I., & Blishch, R. (2022). The intensification of dehydration process of pectin-containing raw materials. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 15–26). HACCP Consulting. https://doi.org/10.5219/1711 DOI: https://doi.org/10.5219/1711
Zheplinska, M., Mushtruk, M., & Salavor, O. (2021). Cavitational Impact on Electrical Conductivity in the Beet Processing Industry. In Lecture Notes in Mechanical Engineering (pp. 755–762). Springer International Publishing. https://doi.org/10.1007/978-3-030-68014-5_73 DOI: https://doi.org/10.1007/978-3-030-68014-5_73
Kukhtyn, M. D., Horiuk, Y. V., Salata, V. Z., Klymyk, V. T., Vorozhbit, N. M., & Rushchinskaya, T. M. (2021). Staphylococcus aureus of raw cow’s milk. In Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies (Vol. 23, Issue 102, pp. 53–59). Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv. https://doi.org/10.32718/nvlvet10208 DOI: https://doi.org/10.32718/nvlvet10208
Calahorrano-Moreno, M. B., Ordoñez-Bailon, J. J., Baquerizo-Crespo, R. J., Dueñas-Rivadeneira, A. A., B. S. M. Montenegro, M. C., & Rodríguez-Díaz, J. M. (2022). Contaminants in the cow’s milk we consume? Pasteurization and other technologies in the elimination of contaminants. In F1000Research (Vol. 11, p. 91). F1000 Research Ltd. https://doi.org/10.12688/f1000research.108779.1 DOI: https://doi.org/10.12688/f1000research.108779.1
Sarba, E. J., Wirtu, W., Gebremedhin, E. Z., Borena, B. M., & Marami, L. M. (2023). Occurrence and antimicrobial susceptibility patterns of Escherichia coli and Escherichia coli O157 isolated from cow milk and milk products, Ethiopia. In Scientific Reports (Vol. 13, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-023-43043-8 DOI: https://doi.org/10.1038/s41598-023-43043-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.