Development and validation of a gas chromatography method for analysing polychlorinated biphenyls in fish roe

Authors

  • Valentyna Korniyenko National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine, Ukrainian Laboratory of Quality and Safety of Agricultural Products, Heroiv Oborony Str., 15, 03041 Kyiv, Ukraine https://orcid.org/0000-0003-0403-7727
  • Svitlana Midyk National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine, Ukrainian Laboratory of Quality and Safety of Agricultural Products, Heroiv Oborony Str., 15, 03041 Kyiv, Ukraine https://orcid.org/0000-0002-2682-2884
  • Serhii Senin National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine, Ukrainian Laboratory of Quality and Safety of Agricultural Products, Heroiv Oborony Str., 15, 03041 Kyiv, Ukraine https://orcid.org/0000-0001-7972-5714
  • Oleksandr Machuskyy National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine, Heroiv Oborony Str., 15, 03041 Kyiv, Ukraine https://orcid.org/0000-0002-3154-1972
  • Olena Ladogubets State Biotechnological University, St. Alchevsky, 44, Kharkiv, 61002, Ukraine
  • Ivan Harkusha State Biotechnological University, St. Alchevsky, 44, Kharkiv, 61002, Ukraine https://orcid.org/0000-0002-6249-2878
  • Yuriy Balym State Biotechnological University, St. Alchevsky, 44, Kharkiv, 61002, Ukraine
  • Alina Menchynska National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products Department of Technology of meat, fish and Marine Products, Polkovnyka Potekhina, str. 16, Kyiv, 03040, Ukraine https://orcid.org/0000-0001-8593-3325

DOI:

https://doi.org/10.5219/1992

Keywords:

fish roe, polychlorinated biphenyls, PCB, gas chromatography, GC, method validation

Abstract

A method for determining polychlorinated biphenyls (PCBs) in fish roe by gas chromatography (GC) has been developed. The suitability (validation) of the process for the determination of 14 PCBs (PCB 18, PCB 31, PCB 28, PCB 52, PCB 44, PCB 101, PCB 149, PCB 118, PCB 153, PCB 138, PCB 180, PCB 170, PCB 194, PCB 209) in fish roe by GC using an electron capture detector (ECD) was evaluated according to the following criteria: selectivity, linearity, limits of detection (LOD), limits of quantification (LOQ), accuracy and precision. Automated Soxhlet extraction and sample clean-up by solid phase extraction (SPE) were proposed for extracting PCBs from fish roe. The results of the method selectivity study showed that the determination of PCBs in fish roe is not affected by other components in the sample. The correlation coefficients for fourteen PCBs ranged from 0.9962 to 0.9999 (R2 ≥0.995). The limits of detection (LOD) and limits of quantification (LOQ) of PCBs are below the maximum permissible levels set by the European Union (EU). The recovery percentage ranged from 81.5% to 107%, indicating the PCB extraction procedure's acceptability (R, 80 – 120%). The relative standard deviation (RSD, %) of the measurement results under convergence conditions ranged from 1.02% to 9.43% (RSD ≥15%). The obtained method suitability (validation) data meets the Commission Regulation (EU) No 589/2014 criteria.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Holembovska, N., Tyshchenko, L., Slobodyanyuk, N., Israelian, V., Kryzhova, Y., Ivaniuta, A., Pylypchuk, О., Menchynska, A., Shtonda, O., & Nosevych, D. (2021). Use of aromatic root vegetables in the technology of freshwater fish preserves. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 296–305). HACCP Consulting. https://doi.org/10.5219/1581 DOI: https://doi.org/10.5219/1581

Makarenko, A., Mushtruk, M., Rudyk-Leuska, N., Kononenkо, R., Shevchenko, P., Khyzhniak, M., Martseniuk, V., Kotovska, G., Klymkovetskyі, A., & Glebova, J. (2022). Investigation of internal organs and additive tissue of hybrid hypophthalmichthys (Hypophthalmichthys spp.) as a promising raw material for the production of dietary nutritional products. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 411–430). HACCP Consulting. https://doi.org/10.5219/1760 DOI: https://doi.org/10.5219/1760

Bondarchuk, M., Khartiі, М. (2022). Global trends in the development of the caviar products market. In Efektyvna ekonomika (Vol. 2, pp. 1–9). Dnipro State Agrarian and Economic University. https://doi.org/10.32702/2307-2105-2022.2.77 DOI: https://doi.org/10.32702/2307-2105-2022.2.77

Overview of the fish market of Ukraine for 2022 and 2023. (2024, January, 4). In UIFSA. https://uifsa.ua/news/news-of-ukraine/overview-of-the-fish-market-of-ukraine-for-2022-and-2023

Makarenko, A., Mushtruk, M., Rudyk-Leuska, N., Kononenko, I., Shevchenko, P., Khyzhniak, M., Martseniuk, N., Glebova, J., Bazaeva, A., & Khalturin, M. (2021). The study of the variability of morphobiological indicators of different size and weight groups of hybrid silver carp (Hypophthalmichthys spp.) is a promising direction of development of the fish processing industry. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 181–191). HACCP Consulting. https://doi.org/10.5219/1537 DOI: https://doi.org/10.5219/1537

Bunga, S., Carne, A., Bekhit, A. El-D. A. (2022). Chapter 3 - Composition and nutrition of fish roes. In Bekhit, A. El-D. A. (Ed.), Fish roe: Biochemistry, Products, and Safety (pp. 41–92). Academic Press. https://doi.org/10.1016/B978-0-12-819893-3.00011-4 DOI: https://doi.org/10.1016/B978-0-12-819893-3.00011-4

Wirth, M., Kirschbaum, F., Gessner, J., Krüger, A., Patriche, N., Billard, R. (2000). Chemical and biochemical composition of caviar from different sturgeon species and origins. In Nahrung (Vol. 44, Issue 4, pp. 233–237). Akademie-Verlag. DOI: https://doi.org/10.1002/1521-3803(20000701)44:4<233::AID-FOOD233>3.0.CO;2-1

Bal’-Prylypko, L. V., Derevyanko, L. P., Slobodyanyuk, N. M., Starkova, E. R., & Androshchiuk, O. S. (2018). Using of the Ampullaria glauca snails’ caviar for correction of the effects of the ionizing radiation exposure in small dose. In Nuclear Physics and Atomic Energy (Vol. 19, Issue 2, pp. 159–165). National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications). https://doi.org/10.15407/jnpae2018.02.159 DOI: https://doi.org/10.15407/jnpae2018.02.159

Ugnivenko, A., Nosevych, D., Antoniuk, T., Chumachenko, I., Ivaniuta, A., Slobodyanyuk, N., Kryzhova, Y., Rozbytska, T., Gruntovskyi, M., & Marchyshyna, Y. (2022). Manifestation of living and post-slaughter traits of productivity in inbred and outbred bull calves of Ukrainian meat cattle breed. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 356–366). HACCP Consulting. https://doi.org/10.5219/1769 DOI: https://doi.org/10.5219/1769

Honchar, V., Iakubchak, O., Shevchenko, L., Midyk, S., Korniyenko, V., Kondratiuk, V., Rozbytska, T., Melnik, V., & Kryzhova, Y. (2022). The effect of astaxanthin and lycopene on the content of fatty acids in the yolks of chicken eggs under different storage regimes. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 473–489). HACCP Consulting. https://doi.org/10.5219/1774 DOI: https://doi.org/10.5219/1774

Gong, Ya., Huang, Ya., Gao, L., Lu, J., Hu, Yu., Xia, L., Huang, H. (2013). Nutritional Composition of Caviar from Three Commercially Farmed Sturgeon Species in China. In Journal of Food and Nutrition Research (Vol. 1, Issue 5, pp. 108–112). Graduate School Foundation Inc.

Ma, S., Li, L., Hao, S., Yang, X., Huang, H., Cen, J., Wang Yu. (2020). Journal of Oleo Science (Vol. 69, Issue 10, pp.1199–1208). Japan Oil Chemists' Society. https://doi.org/10.5650/jos.ess20061 DOI: https://doi.org/10.5650/jos.ess20061

Abbas, E., Hrachya, G. (2015). Fatty acid composition of caviar and liver from cultured great sturgeon (Huso huso). In International Food Research Journal (Vol. 22, Issue 3, pp.1083–1086). Elsevier BV.

Ivaniuta, A., Menchynska, A., Nesterenko, N., Holembovska, N., Yemtcev, V., Marchyshyna, Y., Kryzhova, Y., Ochkolyas, E., Pylypchuk, О., & Israelian, V. (2021). The use of secondary fish raw materials from silver carp in the technology of structuring agents. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 546–554). HACCP Consulting. https://doi.org/10.5219/1626 DOI: https://doi.org/10.5219/1626

DSTU 8096, 2015. Salted fish roe. Specifications.

Khyzhnyak, S., Voitsitskiy, V., Korniyenko, V. (2022). Polychlorinated biphenyls in the environment and methods of their determination. In Topical issues of the development of veterinary medicine and breeding technologies: scientific monograph (pp. 546–570). Baltija Publishing. https://doi.org/10.30525/978-9934-26-258-6-17 DOI: https://doi.org/10.30525/978-9934-26-258-6-17

Shang, X., Dong, G., Zhang, H., Zhang, L., Yu, X., Li, J., Wang, X., Yue, B., Zhao, Y., Wu, Y. (2016). Polybrominated diphenyl ethers (PBDEs) and indicator polychlorinated biphenyls (PCBs) in various marine fish from Zhoushan fishery, China. In Food Control (Vol. 67, pp. 240–246). EFFoST. https://doi.org/10.1016/j.foodcont.2016.03.008. DOI: https://doi.org/10.1016/j.foodcont.2016.03.008

Panesar, H. K., Kennedy, C. L., Keil, Stietz, K. P., Lein, P. J. (2020). Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? In Toxics (Vol. 8, pp. 1–32). MDPI AG. https://doi.org/10.3390/toxics8030070 DOI: https://doi.org/10.3390/toxics8030070

Abolghasemi, M., Esmaeilzadeh, S., Mirabi, P., Golsorkhtabaramiri, M. (2021). Human Exposure to Polychlorinated Biphenyls (PCBs) and The Risk of Endometriosis: A Systematic Review and Meta-Analysis Protocol. In International Journal of preventive medicine (Vol. 12, p. 108). Isfahan University of Medical Sciences. https://doi.org/10.4103/ijpvm.IJPVM_178_19 DOI: https://doi.org/10.4103/ijpvm.IJPVM_178_19

Bober, A., Liashenko, M., Protsenko, L., Slobodyanyuk, N., Matseiko, L., Yashchuk, N., Gunko, S., & Mushtruk, M. (2020). Biochemical composition of the hops and quality of the finished beer. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 307–317). HACCP Consulting. https://doi.org/10.5219/1311 DOI: https://doi.org/10.5219/1311

Liu, J., Li, G., Liu, J., Wang, P., Wu, D., Zhang, X., & Wu, Y. (2023). Recent Progress on Toxicity and Detection Methods of Polychlorinated Biphenyls in Environment and Foodstuffs. In Critical Reviews in Analytical Chemistry (Vol. 53, Issue 4, pp. 928–953). Taylor & Francis. https://doi.org/10.1080/10408347.2021.1997570 DOI: https://doi.org/10.1080/10408347.2021.1997570

State sanitary rules and standards. (2020). Maximum permissible levels of certain pollutants in food products. Order No. 1238 dated 05.22.2020. Retrieved from: https://zakon.rada.gov.ua/laws/show/z0684-20#Text

Commission Regulation (EU) No 1259. (2011). Commission Regulation (EU) No 1259/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non dioxin-like PCBs in foodstuffs. In Official Journal of the European Union (Vol. 3, pp. 18–23). Publications Office of the European Union.

Lüth, A., Lahrssen-Wiederholt, M., Karl, H. (2018). Studies on the influence of sampling on the levels of dioxins and PCB in fish. In Chemosphere (Vol. 212, pp. 1133–1141). Elsevier BV. https://doi.org/10.1016/j.chemosphere.2018.09.011 DOI: https://doi.org/10.1016/j.chemosphere.2018.09.011

Eghbaljoo, H., Ghalhari, M. R., Shariatifar, N., Khaniki, G. J., Aghaee, E. M., Sani, M. A., Mansouri, E., Majid Arabameri (2023). Analysis of polychlorinated biphenyls (PCBs) in edible oils using the QuEChERS/GC-MS method: A health risk assessment study. In Heliyon (Vol. 9, p. 21317). Elsevier BV. https://doi.org/10.1016/j.heliyon.2023.e21317 DOI: https://doi.org/10.1016/j.heliyon.2023.e21317

Grafton, A., Lee, D., Libero, D., Miller, J., Rapko, K. (2006). Polychlorinated Biphenyls (PCBs) in Fish Roe. In Journal of Young Investigators (Vol. 1). Philadelphia University. Retrieved from: https://www.jyi.org/2006-january/2017/10/8/polychlorinated-biphenyls-pcbs-in-fish-roe

Colangelo, R., Diletti, G., Scortichini, G., Calitri, A., Casamassima, F., Iammarino, M., Nardelli, V., Zianni, R., Ingegno, M. (2023). Determination of non-dioxin like polychlorinated biphenyls by GC-ECD and GC-HRMS analysis in seafood. Conference: Chimica sotto l'Albero 2023 - Innovazione e Resilienza: Giovani Ricercatori per un Futuro Sostenibile.

DSTU EN 1528-1, 2002. Fatty food products. Determination of pesticides and polychlorinated biphenyls (PCB). Part 1. General provisions (EN 1528-1:1996, IDT).

EN 1528-2, 1998. Fatty food. Dnetermination of pesticides and polychlorinated biphenyls (PCBs). Part 2: Extraction of fat, pesticides and PCBs, and determination of fat content

EN 1528-3, 1996. Fatty food. Determination of pesticides and polychlorinated biphenyls (PCBs). Part 3. Clean-up methods.

EN 1528-4, 1996. Fatty food. Determination of pesticides and polychlorinated biphenyls (PCBs). Part 4: Determination, confirmatory tests, miscellaneous.

BS EN 1528-3, 1997. Fatty food. Determination of pesticides and polychlorinated biphenyls (PCBs) Clean-up methods Retrieved from: https://www.epa.gov/sites/default/files/2015-12/documents/8082a.pdf

Commission Regulation (EU) No 589. (2014). Commission Regulation (EU) No 589/2014 of 2 June 2014 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 252/2012. In Official Journal of the European Union (Vol. 3, pp.18–40). Publications Office of the European Union.

Соmmission Decision of 14 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (notified under document number C (2002) 3044), тext with EEA relevance 2002/657/ EC. In Official journal of the European Union (L 221, pp. 8–36).

Council Directive 96/23/EC of 29 April 1996 on measures to monitor certain substances and residues there of in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC.

SANTE 11312/2021 (2021). Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Retrieved from: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf

Levchuk, I. V. (2014). Determination of polychlorinated biphenyls (PCBs) in oils and fats. In Intehrovani Tekhnolohii ta Enerhozberezhennya (Vol. 1, pp. 113–120). National Technical University "Kharkiv Polytechnic Institute".

Ostadgholami, M., Zeeb, M., Amirahmadi, M., Daraei, B. (2024). Multivariate Optimization and Validation of a Modified QuEChERS Method for Determination of PAHs and PCBs in Grilled Meat by GC-MS. In Foods (Vol. 13, p. 143). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/foods13010143 DOI: https://doi.org/10.3390/foods13010143

Chmil, V. D., Golohova, O. V., Vydrin, D. J., Kalashnikov, A. A. (2016). Prospects of using the QuEChERS method to assess the toxicological safety of food products. In Problemy harchuvannja (Vol. 2, pp. 69–78). Scientific center of preventive toxicology, food and chemical safety named after Academician LI Medved.

Senin, S. A., Midyk, S. V., Kornienko, V. І., Konovalova, O.Yu., Berezovskiy, O. V., Ladohubets, E. V., Harkusha, I. V. (2023). Determination of Mycotoxins in Wheat Grain by LC-MS/MS using Modified QuEChERS Sample Preparation. In Methods and Objects of Chemical Analysis (Vol. 18, Issue 1, p. 22–28). Taras Shevchenko National University of Kyiv. https://doi.org/10.17721/moca.2023.22-28 DOI: https://doi.org/10.17721/moca.2023.22-28

Ottonello, G., Ferrari, A., Magi, E. (2014). Determination of polychlorinated biphenyls in fish: Optimisation and validation of a method based on accelerated solvent extraction and gas chromatography–mass spectrometry. In Food Chemistry (Vol. 142, pp. 327–333). Elsevier BV. https://doi.org/10.1016/j.foodchem.2013.07.048 DOI: https://doi.org/10.1016/j.foodchem.2013.07.048

Afful, S., Awudza, J. A. M., Twumasi, S. K., Osae, S. (2013). Determination of indicator polychlorinated biphenyls (PCBs) by gas chromatography–electron capture detector. In Chemosphere (Vol. 93, Issue 8, pp. 1556–1560). Elsevier BV. https://doi.org/10.1016/j.chemosphere.2013.08.001 DOI: https://doi.org/10.1016/j.chemosphere.2013.08.001

Skrynnyk М.М. (2017). Determination of organochlorine pesticides and polychlorinated biphenyls in aquatic organisms by chromato-mass-spectrometry method. [Candidate dissertation, Uzhgorod National University]. Uzhgorod National University. Retrieved from: https://www.uzhnu.edu.ua/uk/infocentre/get/11325

DSTU 4514, 2006. Fish, other water fresh resources and food stuffs from them. Detection of chlorine-organik pesticids and polychlorinated bifenils by method of gas-liquid chromatography.

Method 8082A. (2000). Polychlorinated biphenyls (PCBs) by gas chromatography. https://www.accustandard.com/media/assets/8082a.pdf

Method 3540С. (1996). Soxhlet extraction. Retrieved from: https://www.epa.gov/sites/default/files/2015-12/documents/3540c.pdf

Method 3541. (1994). Automated Soxhlet extraction. Retrieved from: https://www.epa.gov/sites/default/files/2015-06/documents/epa-3541.pdf

Method 3545. (1996). Pressurized fluid extraction (PFE). Retrieved from: http://www.cromlab.es/Articulos/Metodos/EPA/3000/3545.PDF

Method 3546. (2007). Microwave extraction. Retrieved from: https://www.epa.gov/sites/default/files/2015-12/documents/3546.pdf

Method 3550 B. (1996). Ultrasonic extraction. http://www.cromlab.es/Articulos/Metodos/EPA/3000/3550B.PDF

Method 3562. (2007). Supercritical fluid extraction of polychlorinated biphenyls (PCBs) and organochlorine pesticides. Retrieved from: https://www.epa.gov/sites/default/files/2015-12/documents/3562.pdf

Zheplinska, M., Mushtruk, M., Vasyliv, V., Sarana, V., Gudzenko, M., Slobodyanyuk, N., Kuts, A., Tkachenko, S., & Mukoid, R. (2021). The influence of cavitation effects on the purification processes of beet sugar production juices. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 18–25). HACCP Consulting. https://doi.org/10.5219/1494 DOI: https://doi.org/10.5219/1494

Nardelli, V., D’Amico, V., Casamassima, F., Gesualdo, G., Li, D., Marchesiello, W. M. V., Nardiello, D., Quinto, M. (2019). Development of a screening analytical method for the determination of non-dioxin-like polychlorinated biphenyls in chicken eggs by gaschromatography and electron capture detection. In Food Additives & Contaminants: Part A (Vol. 36, Issue 9, pp. 1393–1403). Taylor & Francis. https://doi.org/10.1080/19440049.2019.1627002 DOI: https://doi.org/10.1080/19440049.2019.1627002

DSTU IEC 61619, 2019. Insulation liquids. Contamination by polychlorinated biphenyls (PCBs). Method of determination by capillary column gas chromatography (IEC 61619:1997, IDT).

Downloads

Published

2024-08-20

How to Cite

Korniyenko, V., Midyk, S., Senin, S., Machuskyy, O., Ladogubets, O., Harkusha, I., Balym, Y., & Menchynska, A. (2024). Development and validation of a gas chromatography method for analysing polychlorinated biphenyls in fish roe. Potravinarstvo Slovak Journal of Food Sciences, 18, 741–754. https://doi.org/10.5219/1992

Most read articles by the same author(s)