Influence of starter cultures of lactic acid bacteria on microbiological parameters and shelf life of sausages
DOI:
https://doi.org/10.5219/2012Keywords:
safety, spoilage, vacuum packaging, minced meat, cooked meat productsAbstract
The main spoilage microorganisms of the vacuum-packaged sausages on the first day of chilled storage are the bacteria of the following families: Enterobacteriaceae (Raoultella planticola, Raoultella ornithinolytica, and Citrobacter freundii), Morganellaceae (Morganella morganii) and Staphylococcaceae (Macrococcus caseolyticus), and at the end of the shelf life (on the twenty-first day) - Enterobacteriaceae (Proteus mirabilis, Moellerella wisconsensis and Serratia liquefaciens). An appearance of cloudy juice, surface slime and delamination of the vacuum packaging characterises the sausage spoilage. QMAFAnM in the sausages was increased by 1.09 lg CFU/g and 1.53 lg CFU/g on the first day of storage, by 1.18 lg CFU/g and 1.54 lg CFU/g on the twelfth day, by 0.92 lg CFU/g and 1.96 lg CFU/g on the eighteenth day, respectively, compared to the control sample, because “Vienna sausages with chicken fillet” were treated with starter culture SafePro BLC-48 (Lactobacillus curvatus) or the mixture of starter cultures SafePro BLC-48 (Lactobacillus curvatus) + Bactoferm Rubis (Lactococcus lactis subsp. Lactis) before vacuum packaging. Because the sausages were treated with the mixture of starter cultures SafePro BLC-48 + Bactoferm Rubis, the lactic-acid microorganisms were increased by 0.63 lg CFU/g and 0.53 lg CFU/g on the twenty-fifth and thirtieth days, respectively, compared to the sausages that were treated with SafePro BLC-48. During the entire shelf life, no pathogenic and opportunistic pathogenic bacteria, in particular S. aureus, L. monocytogenes, Salmonella spp., E. coli, coliform bacteria, as well as yeast and mold, were detected in the sausages under all treatment options. The use of starter culture SafePro BLC-48 (Lactobacillus curvatus) or the mixture of starter cultures SafePro BLC-48 (Lactobacillus curvatus) + Bactoferm Rubis (Lactococcus lactis subsp. Lactis) increases the shelf life of the vacuum-packaged sausages if they are kept in a refrigerator for up to 30 days, which is 12 days longer than their shelf life without treatment. The sausage treatment with the mixed starter cultures of the lactic-acid microorganisms may be promising if the development of the aerobic spoilage bacteria is confirmed.
Downloads
Metrics
References
Bayer, O. V. Bondarets, O. V. Mykhalska V. М., Shevchenko, L. V., Stupak, О. М. Fesenko, J. V. Dovgopol, Y. V., Liniichuk, N. V., Kovalenko, V. L., Galka, I. V., Кryvenok, M. J., & Poliakovskyi, V. M. (2021). Evaluation of QuEChERS sample preparation for determination of benzimidazoles residues in meat by UPLC-MS/MS. In Methods and Objects of Chemical Analysis (Vol. 16, Issues 1, pp. 32–40). Taras Shevchenko National University. https://doi.org/10.17721/moca.2021.32-40 DOI: https://doi.org/10.17721/moca.2021.32-40
Bhattacharya, D., Nanda, P. K., Pateiro, M., Lorenzo, J. M., Dhar, P., & Das, A. K. (2022). Lactic acid bacteria and bacteriocins: novel biotechnological approach for biopreservation of meat and meat products. In Microorganisms (Vol. 10, Issue 10, p. 2058). MDPI AG. https://doi.org/10.3390/microorganisms10102058 DOI: https://doi.org/10.3390/microorganisms10102058
Shanina, O., Minchenko, S., Gavrysh, T., Sukhenko, Y., Sukhenko, V., Vasyliv, V., Miedviedieva, N., Mushtruk, M., Stechyshyn, M., & Rozbytska, T. (2020). Substantiation of basic stages of gluten-free steamed bread production and its influence on quality of finished product. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 189–201). HACCP Consulting. https://doi.org/10.5219/1200 DOI: https://doi.org/10.5219/1200
Austrich-Comas, A., Jofré, A., Gou, P., & Bover-Cid, S. (2023). Assessing the impact of different technological strategies on the fate of Salmonella in chicken dry-fermented sausages by means of challenge testing and predictive models. In Microorganisms (Vol. 11, Issues 2, p. 432). MDPI AG. https://doi.org/10.3390/microorganisms11020432 DOI: https://doi.org/10.3390/microorganisms11020432
Pellegrini, M., Barbieri, F., Montanari, C., Iacumin, L., Bernardi, C., Gardini, F., & Comi, G. (2023). Microbial spoilage of traditional goose sausages produced in a northern region of Italy. In Microorganisms (Vol. 11, Issues 8, p. 1942). MDPI AG. https://doi.org/10.3390/microorganisms11081942 DOI: https://doi.org/10.3390/microorganisms11081942
Julizan, N., Ishmayana, S., Zainuddin, A., Van Hung, P., & Kurnia, D. (2023). Potential of Syzygnium polyanthum as natural food preservative: a review. In Foods (Vol. 12, Issue 12, p. 2275). MDPI AG. https://doi.org/10.3390/foods12122275 DOI: https://doi.org/10.3390/foods12122275
Shevchenko, L. V., Dobrozhan, Y. V., Mykhalska, V. M., Osipova, T. Y., & Solomon, V. V. (2019). Contamination of hen manure with nine antibiotics in poultry farms in Ukraine. In Regulatory Mechanisms in Biosystems (Vol. 10, Issue 4, pp. 532–537). Oles Honchar Dnipro National University. https://doi.org/10.15421/021978 DOI: https://doi.org/10.15421/021978
Beya, M. M., Netzel, M. E., Sultanbawa, Y., Smyth, H., & Hoffman, L. C. (2021). Plant-based phenolic molecules as natural preservatives in comminuted meats: a review. In Antioxidants (Basel, Switzerland) (Vol. 10, Issue 2, p. 263). MDPI AG. https://doi.org/10.3390/antiox10020263 DOI: https://doi.org/10.3390/antiox10020263
Vovkotrub, V., Iakubchak, O., Horalskyi, L., Vovkotrub, N., Shevchenko, L., Shynkaruk, N., Rozbytska, T., Slyva, Y., Tupitska, O., & Shtonda, O. (2023). The microscopic structure of pork neck after cooling with showering stiving and processing by culture Lactobacillus sakei. (Vol. 17, pp. 759-776). Potravinarstvo Slovak Journal of Food Sciences. HACCP Consulting https://doi.org/10.5219/1905 DOI: https://doi.org/10.5219/1905
Bodie, A. R., O'Bryan, C. A., Olson, E. G., & Ricke, S. C. (2023). Natural antimicrobials for Listeria monocytogenes in ready-to-eat meats: current challenges and future prospects. In Microorganisms (Vol. 11, Issue 5, p. 1301). MDPI AG. https://doi.org/10.3390/microorganisms11051301 DOI: https://doi.org/10.3390/microorganisms11051301
Mihaylova-Garnizova, R., Davidova, S., Hodzhev, Y., & Satchanska, G. (2024). Antimicrobial peptides derived from bacteria: classification, sources, and mechanism of action against multidrug-resistant bacteria. In International Journal of Molecular Sciences (Vol. 25, Issue 19, p. 10788). MDPI AG. https://doi.org/10.3390/ijms251910788 DOI: https://doi.org/10.3390/ijms251910788
Smaoui, S., Echegaray, N., Kumar, M., Chaari, M., D'Amore, T., Shariati, M. A., Rebezov, M., & Lorenzo, J. M. (2024). Beyond conventional meat preservation: saddling the control of bacteriocin and lactic acid bacteria for clean label and functional meat products. In Applied Biochemistry and Biotechnology (Vol. 196, Issue 6, pp. 3604–3635). Springer Science and Business Media LLC. https://doi.org/10.1007/s12010-023-04680-x DOI: https://doi.org/10.1007/s12010-023-04680-x
Dias, I., Laranjo, M., Potes, M. E., Agulheiro-Santos, A. C., Ricardo-Rodrigues, S., Fraqueza, M. J., Oliveira, M., & Elias, M. (2022). Staphylococcus spp. and Lactobacillus sakei starters with high level of inoculation and an extended fermentation step improve safety of fermented sausages. In Fermentation (Vol. 8, Issue 2, p. 49). MDPI AG. https://doi.org/10.3390/fermentation8020049 DOI: https://doi.org/10.3390/fermentation8020049
Dias, I., Laranjo, M., Potes, M. E., Agulheiro-Santos, A. C., Ricardo-Rodrigues, S., Fialho, A. R., Véstia, J., Fraqueza, M. J., Oliveira, M., & Elias, M. (2021). Co-inoculation with Staphylococcus equorum and Lactobacillus sakei reduces vasoactive biogenic amines in traditional dry-cured sausages. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 13, p. 7100). MDPI AG. https://doi.org/10.3390/ijerph18137100 DOI: https://doi.org/10.3390/ijerph18137100
Segli, F., Melian, C., Muñoz, V., Vignolo, G., & Castellano, P. (2021). Bioprotective extracts from Lactobacillus acidophilus CRL641 and Latilactobacillus curvatus CRL705 inhibit a spoilage exopolysaccharide producer in a refrigerated meat system. In Food Microbiology (Vol. 97, p. 103739). Elsevier BV. https://doi.org/10.1016/j.fm.2021.103739 DOI: https://doi.org/10.1016/j.fm.2021.103739
Castilho, N. P. A., Colombo, M., Oliveira, L. L., Todorov, S. D., & Nero, L. A. (2019). Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from Calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes. BMC Microbiology (Vol. 19, Issue 1, p. 63). Scimago Journal & Country Rank. https://doi.org/10.1186/s12866-019-1436-4 DOI: https://doi.org/10.1186/s12866-019-1436-4
Gumienna, M., & Górna, B. (2021). Antimicrobial food packaging with biodegradable polymers and bacteriocins. In Molecules (Basel, Switzerland). (Vol. 26, Issue 12, p. 3735). MDPI AG. https://doi.org/10.3390/molecules26123735 DOI: https://doi.org/10.3390/molecules26123735
Hernández-Aquino, S., Miranda-Romero, L. A., Fujikawa, H., Maldonado-Simán, E. J., & Alarcón-Zuñiga, B. (2019). Antibacterial activity of lactic acid bacteria to improve shelf life of raw meat. In Biocontrol Science (Vol. 24, Issue 4, pp. 185–192). Informa UK Limited. https://doi.org/10.4265/bio.24.185 DOI: https://doi.org/10.4265/bio.24.185
Sun, F., Kong, B., Chen, Q., Han, Q., & Diao, X. (2017). N-nitrosoamine inhibition and quality preservation of Harbin dry sausages by inoculated with Lactobacillus pentosus, Lactobacillus curvatus and Lactobacillus sakei. In Food Control (Vol. 73. pp. 1514-1521). Elsevier BV. https://doi.org/10.1016/j.foodcont.2016.11.018 DOI: https://doi.org/10.1016/j.foodcont.2016.11.018
Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., Darb Emamie, A., Ghanavati, R., & Kakanj, M. (2022). Bacteriocins: Properties and potential use as antimicrobials. In Journal of Clinical Laboratory Analysis (Vol. 36, Issue 1, p. e24093). Wiley. https://doi.org/10.1002/jcla.24093 DOI: https://doi.org/10.1002/jcla.24093
Pang, X., Song, X., Chen, M., Tian, S., Lu, Z., Sun, J., Li, X., Lu, Y., & Yuk, H. G. (2022). Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. In Comprehensive Reviews in Food Science and Food Safety (Vol. 21, Issue 2, pp. 1657–1676). Wiley. https://doi.org/10.1111/1541-4337.12922 DOI: https://doi.org/10.1111/1541-4337.12922
Mushtruk, M., Bal-Prylypko, L., Slobodyanyuk, N., Boyko, Y., & Nikolaienko, M. (2022). Design of Reactors with Mechanical Mixers in Biodiesel Production. In Lecture Notes in Mechanical Engineering (pp. 197–207). Springer International Publishing. https://doi.org/10.1007/978-3-031-06044-1_19 DOI: https://doi.org/10.1007/978-3-031-06044-1_19
Czerwiński, K., Rydzkowski, T., Wróblewska-Krepsztul, J., & Thakur, V. K. (2021). Towards impact of modified atmosphere packaging (MAP) on shelf-life of polymer-film-packed food products: challenges and sustainable developments. In Coatings (Vol. 11, p. 1504). MDPI AG. https://doi.org/10.3390/coatings11121504 DOI: https://doi.org/10.3390/coatings11121504
Kawecki, K., Stangierski, J., & Cegielska-Radziejewska, R. (2021). The influence of packing methods and storage time of poultry sausages with liquid and microencapsulated fish oil additives on their physicochemical, microbial and sensory properties. In Sensors (Basel, Switzerland) (Vol. 21, Issue 8, p. 2653). MDPI AG. https://doi.org/10.3390/s21082653 DOI: https://doi.org/10.3390/s21082653
Gupta, P. (2023). Role of oxygen absorbers in food as packaging material, their characterization and applications. In Journal of Food Science and Technology (Vol. 61, Issue 2, pp. 1–11). Springer Science and Business Media LLC https://doi.org/10.1007/s13197-023-05681-8 DOI: https://doi.org/10.1007/s13197-023-05681-8
Bayer, O. V., Kaminska, O. V., Shevchenko, L. V., Mykhalska, V. М., Stupak, О. М., Bondarets, O. V., & Dobrozhan, Y. V. (2019). Development and evaluation of the suitability of the method for determining the content of egg coccidiostatics using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). In Methods and Objects of Chemical Analysis (Vol. 14, Issue 1, pp. 43–51). Taras Shevchenko National University. https://doi.org/10.17721/moca.2019.43-51 DOI: https://doi.org/10.17721/moca.2019.43-51
Chen, Y., Yu, L., Qiao, N., Xiao, Y., Tian, F., Zhao, J., Zhang, H., Chen, W., & Zhai, Q. (2020). Latilactobacillus curvatus: a candidate probiotic with excellent fermentation properties and health benefits. Foods (Basel, Switzerland) (Vol. 9, Issue 10, p. 1366). MDPI AG. https://doi.org/10.3390/foods9101366 DOI: https://doi.org/10.3390/foods9101366
Rogoskii, I., Mushtruk, M., Titova, L., Snezhko, O., Rogach, S., Blesnyuk, O., Rosamaha, Y., Zubok, T., Yeremenko, O., & Nadtochiy, O. (2020). Engineering management of starter cultures in study of temperature of fermentation of sour-milk drink with apiproducts. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 1047–1054). HACCP Consulting. https://doi.org/10.5219/1437 DOI: https://doi.org/10.5219/1437
EFSA Panel on Biological Hazards Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). In EFSA Journal (2013) (Vol. 11, p. 3449). Wiley. https://doi.org/10.2903/j.efsa.2013.3449 DOI: https://doi.org/10.2903/j.efsa.2013.3449
ТU U 15.1-00419880-049-2003 Boiled sausage products. From 6.11.2003. DOI: https://doi.org/10.1088/1126-6708/2003/11/049
DSTU 4823.2:2007 Meat products. Meat products. Organoleptic assessment of quality indicators. Part 2.
Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Retrieved from https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32002R0178
Cheng, H., Xu, H., Julian McClements, D., Chen, L., Jiao, A., Tian, Y., Miao, M., & Jin, Z. (2022). Recent advances in intelligent food packaging materials: Principles, preparation and applications. In Food Chemistry (Vol. 375, p. 131738). Elsevier BV. https://doi.org/10.1016/j.foodchem.2021.131738 DOI: https://doi.org/10.1016/j.foodchem.2021.131738
Vasile, C., & Baican, M. (2021). Progresses in food packaging, food quality, and safety-controlled-release antioxidant and/or antimicrobial packaging. In Molecules (Basel, Switzerland) (Vol. 26, Issue 5, p. 1263). MDPI AG. https://doi.org/10.3390/molecules26051263 DOI: https://doi.org/10.3390/molecules26051263
Zhang, Y., Min, S., Sun, Y., Ye, J., Zhou, Z., & Li, H. (2022). Characteristics of population structure, antimicrobial resistance, virulence factors, and morphology of methicillin-resistant Macrococcus caseolyticus in global clades. In BMC Microbiology (Vol. 22, Issue 1, p. 266). Scimago Journal & Country Rank. https://doi.org/10.1186/s12866-022-02679-8 DOI: https://doi.org/10.1186/s12866-022-02679-8
Keller, J. E., Schwendener, S., Neuenschwander, J., Overesch, G., & Perreten, V. (2022). Prevalence and characterization of -methicillin-resistant Macrococcus spp. in food producing animals and meat in Switzerland in 2019. In Schweizer Archiv fur Tierheilkunde (Vol. 164, Issue 2, pp. 153–164). Gesellschaft Schweizer Tierärztinnen und Tierärzte GST. https://doi.org/10.17236/sat00343 DOI: https://doi.org/10.17236/sat00343
Ramos, G. L. P. A., Vigoder, H. C., & Nascimento, J. S. (2021). Technological applications of Macrococcus caseolyticus and its impact on food safety. In Current Microbiology (Vol. 78, Issue 1). Springer Science and Business Media LLC. 11–16. https://doi.org/10.1007/s00284-020-02281-z DOI: https://doi.org/10.1007/s00284-020-02281-z
Uwamahoro, H.P., Li, F., Timilsina, A., Liu, B., Wang, X., & Tian, Y. (2022). An assessment of the lactic acid-producing potential of bacterial strains isolated from food waste. In Microbiological Research (Vol. 13, pp. 278-291). MDPI AG. https://doi.org/10.3390/microbiolres13020022 DOI: https://doi.org/10.3390/microbiolres13020022
Mazhar, S., Kilcawley, K. N., Hill, C., & McAuliffe, O. (2020). A Systems-Wide Analysis of Proteolytic and Lipolytic Pathways Uncovers The Flavor-Forming Potential of The Gram-Positive Bacterium Macrococcus caseolyticus subsp. caseolyticus. In Frontiers in Microbiology (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fmicb.2020.01533 DOI: https://doi.org/10.3389/fmicb.2020.01533
Villacís, J. E., Castelán-Sánchez, H. G., Rojas-Vargas, J., Rodríguez-Cruz, U. E., Albán, V., Reyes, J. A., Meza-Rodríguez, P. M., Dávila-Ramos, S., Villavicencio, F., Galarza, M., & Gestal, M. C. (2023). Emergence of Raoultella ornithinolytica in human infections from different hospitals in Ecuador with OXA-48-producing resistance. In Frontiers in Microbiology (Vol. 14). Frontiers Media SA. https://doi.org/10.3389/fmicb.2023.1216008 DOI: https://doi.org/10.3389/fmicb.2023.1216008
Perez, P. R. (2021). Infecciones urinarias por el género Raoultella. Revisión de la literatura y aportación de 1 caso por Raoultella ornithinolytica [Tract infections by the genus Raoultella. Literature review and contribution of 1 case of Raoultella ornithinolytica]. In Archivos Espanoles de Urologia (Vol. 74, Issue 3, pp. 276–286). Dialnet Foundation.
El-Shannat, S. M., El-Tawab, A. A. A., & Hassan, W. M. M. (2020). Emergence of Raoultella ornithinolytica isolated from chicken products in Alexandria, Egypt. In Veterinary World (Vol. 13, Issue 7, pp. 1473–1479). Scimago Journal & Country Rank. https://doi.org/10.14202/vetworld.2020.1473-1479 DOI: https://doi.org/10.14202/vetworld.2020.1473-1479
Tang, Y., Yuan, L., Chen, C., Tang, A., Zhou, W., & Yang, Z. (2023). Isolation and characterization of the new isolated bacteriophage YZU-L1 against Citrobacter freundii from a package-swelling of meat product. In Microbial Pathogenesis (Vol. 179, p. 106098). Elsevier BV. https://doi.org/10.1016/j.micpath.2023.106098 DOI: https://doi.org/10.1016/j.micpath.2023.106098
Yu, H., Huang, Y., Lu, L., Liu, Y., Tang, Z., & Lu, S. (2021). Impact of thyme microcapsules on histamine production by Proteus bacillus in Xinjiang smoked horsemeat sausage. In Foods (Vol. 121, Issue 10, p. 2491). MDPI AG. https://doi.org/10.3390/foods10102491 DOI: https://doi.org/10.3390/foods10102491
Ryser, L. T., Arias-Roth, E., Perreten, V., Irmler, S., & Bruggmann, R. (2021). Genetic and phenotypic diversity of Morganella morganii isolated from cheese. In Frontiers in Microbiology (Vol. 12, p. 738492). Frontiers Media SA. https://doi.org/10.3389/fmicb.2021.738492 DOI: https://doi.org/10.3389/fmicb.2021.738492
Wang, Y., Pei, H., Liu, Y., Huang, X., Deng, L., Lan, Q., Chen, S., He, L., Liu, A., Ao, X., Liu, S., Zou, L., & Yang, Y. (2021). Inhibitory mechanism of cell-free supernatants of Lactobacillus plantarum on Proteus mirabilis and influence of the expression of histamine synthesis-related genes. In Food Control (Vol. 125, p. 107982). Elsevier BV. https://doi.org/10.1016/j.foodcont.2021.107982 DOI: https://doi.org/10.1016/j.foodcont.2021.107982
Spampinato, G., Candeliere, F., Amaretti, A., Licciardello, F., Rossi, M., & Raimondi, S. (2022). Microbiota survey of sliced cooked ham during the secondary shelf life. In Frontiers In Microbiology (Vol. 13, p. 842390). Frontiers Media SA. https://doi.org/10.3389/fmicb.2022.842390 DOI: https://doi.org/10.3389/fmicb.2022.842390
Papatsiros, V. G., Athanasiou, L. V., Spanou, V. M., Stylianaki, I., Papakonstantinou, G., Letsios, M., Villioti, C. S., Tsekouras, N., Maragkakis, G., Papaioannou, N., & Christodoulopoulos, G. (2020). First case of Serratia liquefaciens isolated from urinary tract infection in sows and associated clinicopathological and pathological findings. In Letters in Applied Microbiology (Vol. 70, Issue 4, pp. 259–262). Wiley. https://doi.org/10.1111/lam.13267 DOI: https://doi.org/10.1111/lam.13267
Comi, G., Muzzin, A., Corazzin, M., & Iacumin, L. (2020). Lactic Acid Bacteria: Variability Due to Different Pork Breeds, Breeding Systems and Fermented Sausage Production Technology. In Foods (Vol. 9, Issue 3, p. 338). MDPI AG. https://doi.org/10.3390/foods9030338 DOI: https://doi.org/10.3390/foods9030338
Rivas, F. P., & Garro, O. A. (2023). Functionality of the bacteriocin sakacin G produced by Lactobacillus curvatus ACU-1 on cooked sausages under industrial conditions. In Letters in Applied Microbiology (Vol. 76, Issue 2, p. ovad015). Oxford University Press (OUP) https://doi.org/10.1093/lambio/ovad015 DOI: https://doi.org/10.1093/lambio/ovad015
Tönz, A., Freimüller Leischtfeld, S., Stevens, M. J. A., Glinski-Häfeli, D., Ladner, V., Gantenbein-Demarchi, C., & Miescher Schwenninger, S. (2024). Growth control of Listeria monocytogenes in raw sausage via bacteriocin-producing Leuconostoc carnosum DH25. In Foods (Basel, Switzerland) (Vol. 13, Issue 2, p. 398). MDPI AG. https://doi.org/10.3390/foods13020298 DOI: https://doi.org/10.3390/foods13020298
Lucumi-Banguero, R. S., Ramírez-Toro, C., & Bolívar, G. A. (2021). Potential use of lactic acid bacteria with pathogen inhibitory capacity as a biopreservative agent for Chorizo. In Processes (Vol. 9, Issue 9, p. 1582). MDPI AG. https://doi.org/10.3390/pr9091582 DOI: https://doi.org/10.3390/pr9091582
Campaniello, D., Speranza, B., Bevilacqua, A., Altieri, C., Rosaria Corbo, M., & Sinigaglia, M. (2020). Industrial Validation of a Promising Functional Strain of Lactobacillus plantarum to Improve the Quality of Italian Sausages. In Microorganisms (Vol. 8, Issue 1, p. 116). MDPI AG. https://doi.org/10.3390/microorganisms8010116 DOI: https://doi.org/10.3390/microorganisms8010116
Duda-Chodak, A., Tarko, T., & Petka-Poniatowska, K. (2023). Antimicrobial compounds in food packaging. In International Journal of Molecular Sciences (Vol. 24, Issue 3, p. 2457). MDPI AG. https://doi.org/10.3390/ijms24032457 DOI: https://doi.org/10.3390/ijms24032457
Liu, Y., Gao, S., Cui, Y., Wang, L., Duan, J., Yang, X., Liu, X., Zhang, S., Sun, B., Yu, H., & Gao, X. (2024). Characteristics of Lactic Acid Bacteria as Potential Probiotic Starters and Their Effects on the Quality of Fermented Sausages. In Foods (Vol. 13, Issue 2, p. 198). MDPI AG. https://doi.org/10.3390/foods13020198 DOI: https://doi.org/10.3390/foods13020198
Carrión, M. G., Corripio, M. A. R., Contreras, J. V. H., Marrón, M. R., Olán, G. M., & Cázares, A. S. H. (2023). Optimization and characterization of taro starch, nisin, and sodium alginate-based biodegradable films: antimicrobial effect in chicken meat. In Poultry Science (Vol. 102, Issue 12, p. 103100). Elsevier BV. https://doi.org/10.1016/j.psj.2023.103100 DOI: https://doi.org/10.1016/j.psj.2023.103100
Meloni, M. P., Piras, F., Siddi, G., Cabras, D., Comassi, E., Lai, R., McAuliffe, O., De Santis, E. P. L., & Scarano, C. (2023). Comparison of Activity of Commercial Protective Cultures and Thermophilic Lactic Acid Bacteria against Listeria monocytogenes: A New Perspective to Improve the Safety of Sardinian PDO Cheeses. In Foods (Vol. 12, Issue 6, p. 1182). MDPI AG. https://doi.org/10.3390/foods12061182 DOI: https://doi.org/10.3390/foods12061182
Nikodinoska, I., Tabanelli, G., Baffoni, L., Gardini, F., Gaggìa, F., Barbieri, F., & Di Gioia, D. (2023). Characterization of Lactic Acid Bacteria Isolated from Spontaneously Fermented Sausages: Bioprotective, Technological and Functional Properties. In Foods (Vol. 12, Issue 4, p. 727). MDPI AG. https://doi.org/10.3390/foods12040727 DOI: https://doi.org/10.3390/foods12040727
Lemos Junior, W. J. F., Marques Costa, L., Alberto Guerra, C., Sales de Oliveira, V., Gava Barreto, A., Alves de Oliveira, F., Paula, B. P. de, Esmerino, E. A., Corich, V., Giacomini, A., & Guerra, A. F. (2024). Microbial landscape of cooked meat products: evaluating quality and safety in vacuum-packaged sausages using culture-dependent and culture-independent methods over 1 year in a sustainable food chain. In Frontiers in Microbiology (Vol. 15). Frontiers Media SA. https://doi.org/10.3389/fmicb.2024.1457819 DOI: https://doi.org/10.3389/fmicb.2024.1457819
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.