Antibiofilm and antioxidant activity of Rosmarinus officinalis essential oil
DOI:
https://doi.org/10.5219/1693Keywords:
biofilm, Stenotrophomonas maltophilia, Bacillus subtilis, essential oil, MALDI-TOF MS BiotyperAbstract
The aim of the work was to explore the antioxidant potential and antibiofilm activity of the Rosmarinus officinalis essential oil. The DPPH method was used to determine the antioxidant activity. The agar microdilution method was used to determine the minimum biofilm inhibiting concentration (MBIC). The MALDI-TOF MS Biotyper was used to evaluate the antibiofilm activity on the wood and glass surface. Vapor phase antimicrobial analysis was used to determine the effect on the food model. The antioxidant activity was 28.76 % ± 2.68 %. The MBIC for Stenotrophomonas maltophilia was 25 µL.mL-1 and for Bacillus subtilis 12.5 µL.mL-1. Analysis of the mass spectra of S. maltophilia revealed an inhibitory effect from the 5th, which persisted until the end of the experiment. Analysis of the mass spectra of B. subtilis showed an inhibitory effect from the 7th of the experiment. The experiments showed an effect on both tested surfaces. The food model showed a more pronounced effect of the Rosmarinus officinalis essential oil against B. subtilis. We assume that the effect of the essential oil is to disrupt the polysaccharide structure of the biofilm and consequently reduce the resistance of the biofilm. We have established that MALDI-TOF MS Biotyper is a suitable tool for evaluating changes in biofilm structure and could find more significant application for the study of biofilms in food and clinical practice.
Downloads
References
Amjadi, S., Almasi, H., Ghorbani, M., Ramazani, S. 2020. Reinforced ZnONPs/ rosemary essential oil-incorporated zein electrospun nanofibers by κ-carrageenan. Carbohydrate Polymers, vol. 232, no. 15, p. 115800. https://doi.org/10.1016/j.carbpol.2019.115800
Ceylan, O., Uğur, A., Saraç, N., Ozcan, F., Baygar, T. 2014. The in vitro antibiofilm activity of Rosmarinus officinalis L. essential oil against multiple antibiotic resistant Pseudomonas sp. and Staphylococcus sp. Journal of Food, Agriculture & Environment, vol. 12, no. 3-4, p. 82-86.
Elhariry, H., Abuzaid, A. A., Khiralla, G. M., Gherbawy, Y. 2013. Antibiofilm formation and anti‐adhesive (to HEp‐2 cells) effects of rosemary water extract against some food‐related pathogens. International Journal of Food Science & Technology, vol. 49, no. 4, p. 1132-1141. https://doi.org/10.1111/ijfs.12409
Elyemni, M., Louaste, B., Nechad, I., Elkamli, T., Bouia, A., Taleb, M., Chaouch, M., Eloutassi, N. 2019. Extraction of Essential Oils of Rosmarinus officinalis L. by Two Different Methods: Hydrodistillation and Microwave Assisted Hydrodistillation. Scientific World Journal, vol. 2019, no. 1. p. 1-6. https://doi.org/10.1155/2019/3659432
Gachkar, L., Yadegari, D., Rezaei, M. B., Taghizadeh, M., Astaneh, S. A., Rasooli, I. 2007. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chemistry, vol. 102, no. 3, p. 898-904. https://doi.org/10.1016/j.foodchem.2006.06.035
Gaudreau, A. M., Labrie, J., Goetz, C., Dufour, S., Jacques, M. 2018. Evaluation of MALDI-TOF mass spectrometry for the identification of bacteria growing as biofilms. Journal of Microbiological Methods, vol. 145, no. 1, p. 79-81. https://doi.org/10.1016/j.mimet.2018.01.003
Hasan, N., Gopal, J., Wu, H. F. 2011. Rapid, sensitive and direct analysis of exopolysaccharides from biofilm on aluminum surfaces exposed to sea water using MALDI‐TOF MS. Journal of Mass Spectrometry, vol. 46, no. 11, p. 1160-1167. https://doi.org/10.1002/jms.2003
Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A.,Iqbal, M. 2011. Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian Journal of Infectious Diseases, vol. 15, no. 4, p. 305-311. https://doi.org/10.1590/S1413-86702011000400002
Hussain, A. I., Anwar, F., Chatha, A. S. S., Jabbar, A., Mahboob, S., Nigam, P. S. 2010. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian Journal of Microbiology, vol. 41, no. 4. p. 1070-1078. https://doi.org/10.1590/S1517-83822010000400027
Jardak, M., Elloumi-Mseddi, J., Aifa, S., Mnif, S. 2017. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health and Disease, vol. 16, no. 190. https://doi.org/10.1186/s12944-017-0580-9
Kačániová, M., Galovičová, L., Ivanišová, E., Vukovic, N. L., Štefániková, J., Valková, V., Borotová, P., Žiarovská, J., Terentjeva, M., Felšöciová, S., Tvrdá, E. 2020a. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods, vol. 9, no. 3, p. 282. https://doi.org/10.3390/foods9030282
Kačániová, M., Terentjeva, M., Galovičová, L., Ivanišová, E., Štefániková, J., Valková, V., Borotová, P., Kowalczewski, P. Ł., Kunová, S., Felšöciová, S., Tvrdá, E., Žiarovská, J., Prokeinová, R. B., Vukovic, N. 2020b. Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and Its Application in a Food Model. Molecules, vol. 25, no. 7, p. 3956. https://doi.org/10.3390/molecules25173956
Kanth, M. K., Mehta, N., Chatli, M. K., Malav, O. P., Kumar, P., Wagh, R. V., Panwar, H. 2018. In-vitro Assessment of Antimicrobial, Antibiofilm and Antioxidant Potential of Essential Oil from Rosemary (Rosmarinus officinalis L. Journal of Animal Research, vol. 8, no. 6, p. 989-998. http://doi.org/10.30954/2277-940X.12.2018.7
Kasparavičienė, G., Ramanauskienė, K., Savickas, A., Velžienė, S., Kalvėnienė, Z., Kazlauskienė, D., Ragažinskienė, O., Ivanauskas, K. 2013. Evaluation of total phenolic content and antioxidant activity of different Rosmarinus officinalis L. ethanolic extracts. Biologija, vol. 59, no. 1, p. 39-44. https://doi.org/10.6001/biologija.v59i1.2650
Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T. F., Alarcon, E. I. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, vol. 4, no. 12, p. e01067. https://doi.org/10.1016/j.heliyon.2018.e01067
Kocot, A. M., Olszewska, M. A. 2017. Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context. LWT, vol. 84, no. 1, p. 47-57. https://doi.org/10.1016/j.lwt.2017.05.042
Laird, K., Phillips, C. 2011. Vapour phase: a potential future use for essential oils as antimicrobials? Letters in Applied Microbiology, vol. 54, no. 3, p. 169-174. https://doi.org/10.1111/j.1472-765X.2011.03190.x
Lo, H. H., Chang, S. M. 2014. Identification, characterization, and biofilm formation of clinical Chryseobacterium gleum isolates. Diagnostic Microbiology and Infectious Disease, vol. 79, no. 3, p. 298-302. https://doi.org/10.1016/j.diagmicrobio.2014.01.027
Miladi. H., Mili, D., Slama, R. B., Zouari, S., Ammar, B., Bakhrouf, A. 2016. Antibiofilm formation and anti-adhesive property of three mediterranean essential oils against a foodborne pathogen Salmonella strain. Microbial Pathogenesis, vol. 93, no. 1, p. 22-31. https://doi.org/10.1016/j.micpath.2016.01.017
Mohammed, H. A., Al-Omar, M. S,. Mohammed, S. A. A., Aly, M. S. A., Alsuqub, A. N. A., Khan, R.A. 2020. Drying Induced Impact on Composition and Oil Quality of Rosemary Herb, Rosmarinus Officinalis Linn. Molecules, vol. 25, no. 12, p. 2830. https://doi.org/10.3390/molecules25122830
Nasr-Eldin, M. A., Abdelhamid, A. G., Baraka, D. M. 2017. Antibiofilm and Antiviral Potential of Leaf Extracts from Moringa oleifera and Rosemary (Rosmarinus officinalis Lam.). Egyptian Journal of Microbiology, vol. 52, no. 1, p. 129-139. https://doi.org/10.21608/EJM.2017.1439.1027
Nie, J. Y., Li, R., Jiang, Z. T., Wang, Y., Tan, J., Tang, S. H. and Zhang, Y. 2020. Antioxidant activity screening and chemical constituents of the essential oil from rosemary by ultra‐fast GC electronic nose coupled with chemical methodology. Journal of the Science of Food and Agriculture, vol. 100, no. 8, p. 3481-3487. https://doi.org/10.1002/jsfa.10388
Okoh, O. O., Sadimenko, A. P., Afolayan, A. J. 2011. Antioxidant activities of Rosmarinus officinalis L. essential oil obtained by hydro-distillation and solvent free microwave extraction. African Journal of Biotechnology, vol. 10, no. 20, p. 4207-4211.
Pereira, F. D. E. S., Bonattoa, C. C., Lopes, C. A. P., Pereira, A. L., Silva, L. P. 2015. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces. Microbial Pathogenesis, vol. 86, no. 1, p. 32-37. https://doi.org/10.1016/j.micpath.2015.07.005
Pompilio, A., Savini, V, Fiscarelli, E., Gherardi, G., Di Bonaventura, G. 2020. Clonal Diversity, Biofilm Formation, and Antimicrobial Resistance among Stenotrophomonas maltophilia Strains from Cystic Fibrosis and Non-Cystic Fibrosis Patients. Antibiotics, vol. 9, no. 1, p. 15-31. https://doi.org/10.3390/antibiotics9010015
Quave, C. L., Plano, L. R. W., Pantuso, T., Bennett, B. C. 2008. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, vol. 118, no. 3, p. 418-428. https://doi.org/10.1016/j.jep.2008.05.005
Rahbardar, M. G., Amin, B., Mehri, S., Mirnajafi-Zadeh, S. J., Hosseinzadeh, H. 2017. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomedicine & Pharmacotherapy, vol. 86, no. 1, p. 441-449. https://doi.org/10.1016/j.biopha.2016.12.049
Rahnama, M., Fakheri, B. A., Mashhady, M. A., Saeidi, S. 2019. Anti-Bacterial and Anti-Biofilm Activity of Glycyrrhiza glabra, Rosmarinus officinalis and Saponaria officinalis Extracts on Important Food Pathogens. Gene, Cell and Tissue, vol. 6, no. 4, p. e96326. http://doi.org/10.5812/gct.96326
Ranmadugala, D., Ebrahiminezhad, A., Manley-Harris, M., Ghasemi, Y., Berenjian, A. 2017. The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochemistry, vol. 62, no. 1, p. 231-240. https://doi.org/10.1016/j.procbio.2017.07.003
Sánchez‐Moreno, C., Larrauri, J. A., Saura‐Calixto, F. 1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, vol. 76, no. 2, p. 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2%3C270::AID-JSFA945%3E3.0.CO;2-9
Teneva, L. D. G., Goranov, B. G., Denkova-Kostova, R. S., Hristova-Ivanova, Y. M., Klisurova, D. I., Slavchev, A. K., Denkova, Z. R., Kostov, G. A. 2020. Chemical composition, antioxidant and antimicrobial activity of essential oils from leaves and flowers of Rosmarinus officinalis. Bulgarian Chemical Communications, vol. 52, no. 1, p. 54-59.
Touazi, L., Aberkane, B., Bellik, Y., Moula, N., Iguer-Ouada, M. 2018. Effect of the essential oil of Rosmarinus officinalis (L.) on rooster sperm motility during 4 °C short-term storage. Veterinary World, vol. 11, no. 5, p. 590-597. http://doi.org/10.14202/vetworld.2018.590-597
Vieira, M., Bessa, L. J., Martins, M. R., Arantes, S., Teixeira, A. P. S., Mendes, A., Costa, P. M., Belo, A. D. F. 2017. Chemical Composition, Antibacterial, Antibiofilm and Synergistic Properties of Essential Oils from Eucalyptus globulus Labill. and Seven Mediterranean Aromatic Plants. Chemistry & Biodiversity, vol. 14, no. 6, p. e1700006. https://doi.org/10.1002/cbdv.201700006
Wang, W., Wu, Y. N., Zu, Y. G., Fu, Y. J. 2008. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chemistry, vol. 108, no. 3, p. 1019-1022. https://doi.org/10.1016/j.foodchem.2007.11.046
Yahav, S., Berkovich, Z., Ostrov, I., Reifen, R., Shemesh, M. 2018. Encapsulation of beneficial probiotic bacteria in extracellular matrix from biofilm-forming Bacillus subtilis. International Journal, vol. 46, no. 2, p. 974-982. https://doi.org/10.1080/21691401.2018.1476373
Zhang, Y., Wei, J., Chen, H., Song, Z., Guo, H., Yuan, Y., Yue, T. 2020. Antibacterial activity of essential oils against Stenotrophomonas maltophilia and the effect of citral on cell membrane. LWT, vol. 117, no. 1, p. 108667. https://doi.org/10.1016/j.lwt.2019.108667
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Potravinarstvo Slovak Journal of Food Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).