The comparison of biochemical composition of Actinidia kolomikta and Actinidia polygama fruits
DOI:
https://doi.org/10.5219/1682Keywords:
Actinidia kolomikta, Actinidia polygama, antioxidant activity, biochemical composition, fruits secondary metabolitesAbstract
The demand for natural products, which are rich in biologically active compositions, grows constantly. The choice and production of such products can minimize the deficit of importance for human organism components, which are contained only in plant food. The paper contains the laboratory studying results of the chemical composition of the fruits of two Actinidia Lindl. cultivars of Federal State Budgetary Scientific Institution Federal Horticultural Research Center for Breeding, Agrotechnology, and Nursery (FSBSI FSC for Horticulture) genetic collection: Actinidia kolomikta (Rupr. et Maxim.) Maxim. and Actinidia polygama (Siebold et Zucc.) Maxim. All the presented samples are grown in field conditions. The fruits were picked up in the phase of harvest maturity while ripening. The data on antioxidant activity of water and methanol extracts, the content of phenolic compounds sum, soluble solids, and titratable acids in the fruits, and on qualitative composition of secondary metabolites (organic acids, fatty acids, mono-, di- and polysaccharides) are given in the paper. The variation limits of the parameters under study depending on the sample are presented. As a result of the laboratory studies, it was stated that A. kolomikta fruits 10 times exceed A. polygama fruits on all the stated parameters. Only the results on the soluble solids content in the fruits of both cultivars are approximately at the same level (A. kolomikta > A. polygama on 1.16%). The positive correlation between antioxidant activity and the general content of polyphenols is confirmed at both cultivars. Actinidia kolomikta genotypes Chempion and Lakomka and Actinidia polygama ones Tselebnaya and Uzorchataya showed the best results. The correct individual choice of actinidia fruits that are the best ones at the biochemical composition and the content of micronutrients allows supplying the consumers with food products.
Downloads
Metrics
References
Babou, L., Hadidi, L., Grosso, C., Zaidi, F., Valentão, P., Andrade, P. B. 2016. Study of phenolic composition and antioxidant activity of myrtle leaves and fruits as a function of maturation. European Food Research and Technology, vol. 242, p. 1447-1457. https://doi.org/10.1007/s00217-016-2645-9 DOI: https://doi.org/10.1007/s00217-016-2645-9
Biglari, F., Al-Karkhi, A. F., Easa, A. M. 2008. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chemistry, vol. 107, issue 4 p. 1636-1641. https://doi.org/10.1016/j.foodchem.2007.10.033 DOI: https://doi.org/10.1016/j.foodchem.2007.10.033
Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, vol. 28, no. 1, p. 25-30. https://doi.org/10.1016/s0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
Burmenko, Y. V., Kozak, N. V., Marchenko, L. A., Morozova, N. G., Podgaetsky, M. A. et. al. 2018 Дескриптор генетической биоресурсной коллекции растений ФГБНУ ВСТИСП (плодовые, ягодные, редкие ягодные и цветочно-декоративные культуры). Descriptor of the genetic bioresource collection of plants FGBNU VSTISP (fruit, berry, rare berry and floral decorative crops). Monograph (In Russian) Moscow, Russia : All-Russian Institute of Selection and Technology of Horticulture and Nursery, 90 p. ISBN: 978-5-00140-009-7. Available at: https://www.elibrary.ru/item.asp?id=35768050
Cai, Y., Luo, Q., Sun, M., Corke, H. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, vol. 74, no 17, p. 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047 DOI: https://doi.org/10.1016/j.lfs.2003.09.047
Darvesh, A. S., Carroll, R. T., Bishayee, A., Geldenhuys, W. J., van der Schyf , C. J. 2010. Oxidative stress and Alzheimer’s disease: Dietary polyphenols as potential therapeutic agents. Expert Review of Neurotherapeutics, vol. 10, p. 729-745. https://doi.org/10.1586/ern.10.42 DOI: https://doi.org/10.1586/ern.10.42
Esti, M., Messia, M. C., Bertocchi, P., Sientocotra, F., Moneta, E., Nicotra, A., Fantechi, P., Polleschi, G. 1998. Chemical compounds and sensory assessment of kiwifruit (Actinidia chinensis (Planch.) var. chinensis): electrochemical and multivariate analyses. Food Chemistry, vol. 61, no. 3, p. 293-300. https://doi.org/10.1016/S0308-8146(97)00052-6 DOI: https://doi.org/10.1016/S0308-8146(97)00052-6
Etienne, A., Génard, M., Lobit, P., Mbeguié-A-Mbéguié, D., -and Bugaud, C. 2013. What controls f leshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, vol. 64, no. 6, p. 1451-1469. https://doi.org/10.1093/jxb/ert035 DOI: https://doi.org/10.1093/jxb/ert035
Famiani, F., Casulli, V., Proietti, P., Walker, R. P., Battistelli, A. 2007. Organic acid metabolism in grape: role of phosphoenolpyruvate carboxykinase. Acta Horticulturae, vol. 754, p. 599-602. https://doi.org/10.17660/ActaHortic.2007.754.80 DOI: https://doi.org/10.17660/ActaHortic.2007.754.80
Famiani, F., Cultrera, N., Battistelli, A., Casulli, V., Proietti, P., Standardi, A., Chen, Z. H., Leegood, R. C., Walker, R. P. 2005. Phosphoenolpyruvate carboxykinase and its potential role in the catabolism of organic acids in the f lesh of soft fruit during ripening. Journal of Experimental Botany, vol. 56, no. 421, p. 2959-2969. https://doi.org/10.1093/jxb/eri293 DOI: https://doi.org/10.1093/jxb/eri293
Famiani, F., Moscatello, S., Ferradini, N., Gardi, T., Battistelli, A., Walker, R. P. 2014. Occurrence of a number of enzymes involved in either gluconeogenesis or other processes in the pericarp of three cultivars of grape (Vitis vinifera L.) during development. Plant Physiology and Biochemistry, vol. 84, p. 261-270. https://doi.org/10.1016/j.plaphy.2014.10.003 DOI: https://doi.org/10.1016/j.plaphy.2014.10.003
Famiani, F., Walker, R. P., Técsi, L., Chen, Z. H., Proietti, P. and Leegood, R. C. 2000. An immunohistochemical study of the compartmentation of metabolism during the development of grape (Vitis vinifera L.) berries. Journal of Experimental Botany, vol. 51, vol. 345, p. 675-683. https://doi.org/10.1093/jexbot/51.345.675 DOI: https://doi.org/10.1093/jexbot/51.345.675
Gan, C.-Y., Latiff, A.A. 2011. Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chemistry, vol. 124, p. 1277-1283. https://doi.org/10.1016/j.foodchem.2010.07.074 DOI: https://doi.org/10.1016/j.foodchem.2010.07.074
Gong, Y., Hou, Z., Gao, Y., Xue, Y., Liu, X., Liu, G. 2012. Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes erecta L.) residue using response surface methodology. Food and Bioproducts Processing. vol. 90, p. 9-16. https://doi.org/10.1016/j.fbp.2010.12.004 DOI: https://doi.org/10.1016/j.fbp.2010.12.004
GOST ISO 750-2013, 2015. Fruit and vegetable products. Determination of titratable acidity. Interstate Council for Standardization, Metrology and Certification (ISC).
GOST ISO 2173-2013, 2015. Fruit and vegetable products. Refractometric method for determination of soluble solids content. Interstate Council for Standardization, Metrology and Certification (ISC).
Heatherbell D. A. 1975. Identification and quantitative analysis of sugars and non-volatile organic acids in Chinese gooseberry fruit (Actinidia chinensis planch.). Journal of the Science of Food and Agriculture, vol. 26, no. 6, p. 815-820. https://doi.org/10.1002/jsfa.2740260613 DOI: https://doi.org/10.1002/jsfa.2740260613
Ivanova, I., Serdiuk, M., Malkina, V., Bandura, I., Kovalenko, I., Tymoshchuk, T., Tonkha, O., Tsyz, O., Mushtruk, M., Omelian, A. 2021. The study of soluble solids content accumulation dynamics under the influence of weather factors in the fruits of cherries. Potravinarstvo Slovak Journal of Food Sciences, vol. 15, p. 350-359. https://doi.org/10.5219/1554 DOI: https://doi.org/10.5219/1554
Kim, J. G., Beppu, K., Kataoka, I. 2009. Varietal differences in phenolic content and astringency in skin and flesh of hardy kiwifruit resources in Japan. Scientia Horticulturae. vol. 120, p. 551-554. https://doi.org/10.1016/j.scienta.2008.11.032 DOI: https://doi.org/10.1016/j.scienta.2008.11.032
Kolbasina, E. I., Kulikov, I. M., Vitkovsky, V. L. and Timerbekova, S. K. A. 2007. Культурная флора России: том Актинидия. Лимонник (Cultured flora of Russia: Volume Actinidia. Schisandra). Monograph (In Russia). Moscow, Russia: Russian acad. s.-kh. Sciences, All-Russian Selection and Technological Institute of Horticulture and Nursery, GNU MOS VSTISP of the Russian Agricultural Academy (MOGNTS VIR named after N. I. Vavilov 1958-2006). Publisher: Rossel'khozakademiya, 327 p. ISBN: 978-5-85941-258-7.
Kozak, N. V., Imamkulova, Z. A., Medvedev, S. M. 2017. Samples of the collection of far eastern species of Actinidia Lindl. sources of economically valuable traits. In IV Vavilov International conference "Ideas of N. I. Vavilov in the modern world". St. Petersburg, Russia : Publisher Federal State Budgetary Scientific Institution "Federal Research Center All-Russian Institute of Plant Genetic Resources named N.I. Vavilov", p. 263-264. ISBN: 978-5-905954-48-1
Kozak, N. V., Imamkulova, Z. A. 2018. Introduction and selection of actinidia arguta in moscow region. fruit production, seed breeding (In Russia). Introduction of Woody Plants Journal, vol. 21, p. 95-98.
Kozak, N. V., Imamkulova, Z. A., Motyleva, S. M., Mertvishcheva, M. Y., Medvedev, S. M. et.al. 2018. Selection of Actinidia polygama (Siebold et Zucc.) Maxim. in ARHIBAN. Labors of the Kuban State Agrarian University journal. ISSN: 1999-1703, vol. 73, p. 95-99. (In Russian). DOI: https://doi.org/10.21515/1999-1703-73-95-99
Krupa, T., Latocha, P., Liwińska, A. 2011. Changes of physicochemical quality, phenolics and vitamin C content in hardy kiwifruit (Actinidia arguta and its hybrid) during storage. Scientia Horticulturae, vol. 130, p. 410-417. https://doi.org/10.1016/j.scienta.2011.06.044 DOI: https://doi.org/10.1016/j.scienta.2011.06.044
Latocha, P. 2017. The Nutritional and Health Benefits of Kiwiberry (Actinidia arguta). Plant Foods for Human Nutrition, vol. 72, p. 325-334. https://doi.org/10.1007/s11130-017-0637-y DOI: https://doi.org/10.1007/s11130-017-0637-y
Lee, I., Im, S., Jin, C. R. Heo, H. J., Cho, Y-S., Baik, M-Y., and Kim, D-O. 2015 Effect of maturity stage at harvest on antioxidant capacity and total phenolics in kiwifruits (Actinidia spp.) grown in Korea. Horticulture, Environment, and Biotechnology, vol. 56, p. 841-848. https://doi.org/10.1007/s13580-015-1085-y DOI: https://doi.org/10.1007/s13580-015-1085-y
Leontowicz, H., Leontowicz, M., Latocha, P., Jesion, I., Park, Y. S., Katrich, E., Barasch, D., Nemirovski, A., Gorinstein, S. 2016. Bioactivity and nutritional properties of hardy kiwi fruit Actinida arguta in comparison with Actinidia deliciosa ‘Hayward’ and Actinidia eriantha ‘Bidan’. Food Chemistry, vol. 196, p. 281-291. https://doi.org/10.1016/j.foodchem.2015.08.127 DOI: https://doi.org/10.1016/j.foodchem.2015.08.127
Lim, H. W., Kang S. J., Park M., Yoon J. H., Han B. H., Choi S. E., Lee M. W. 2006. Anti-oxidative and nitric oxide production inhibitory activities of phenolic compounds from the fruits of Actinidia arguta. Natural Product Sciences, vol. 12, p. 221-225.
Liu, J.-R., Dong, H.-W., Chen, B.-Q., Zhao, P., Liu, R.-H. 2008. Fresh apples suppress mammary carcinogenesis and proliferative activity and induce apoptosis in mammary tumors of the Sprague–Dawley rat. J. Agric. Food Chem., vol. 57, p. 297-304. https://doi.org/10.1021/jf801826w DOI: https://doi.org/10.1021/jf801826w
Liu, M., Liu, R.-H., Song, B.-B., Li, C.-F., Lin, L.-Q., Zhang, C.-P., Zhao, J.-L., Liu, J.-R. 2010. Antiangiogenetic effects of 4 varieties of grapes in vitro. Journal of Food Science, vol. 75, p. T99-T104. https://doi.org/10.1111/j.1750-3841.2010.01662.x DOI: https://doi.org/10.1111/j.1750-3841.2010.01662.x
Liu, Y., Liu, M., Li, B., Zhao, J.-L., Zhang, C.-P., Lin, L.-Q., Chen, H.-S., Zhang, S.-J., Jin, J.-C., Wang, L., Li, L.-J., Liu, J.-R. 2010. Fresh raspberry phytochemical extract inhibits hepatic lesion in a Wistar rat model. Nutrition and Metabolism, vol. 7, p. 1-8. https://doi.org/10.1186/1743-7075-7-84 DOI: https://doi.org/10.1186/1743-7075-7-84
Manach C., Scalbert, A., Morand, C., Rémésy C., Jiménez, L. 2004. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, vol. 79, p. 727-747. https://doi.org/10.1093/ajcn/79.5.727 DOI: https://doi.org/10.1093/ajcn/79.5.727
McBride, R. L, Johnson, R. L. 1987. Perception of sugar acid mixtures in lemon juice drink. International Journal of Food Science and Technology, vol. 22, p. 399-408. https://doi.org/10.1111/j.1365-2621.1987.tb00503.x DOI: https://doi.org/10.1111/j.1365-2621.1987.tb00503.x
Motyleva, S. M., Kozak, N. V., Kulikov, I. M. 2018. The low molecular weight metabolites in the water extract of fruits of Actinidia Lindl. Issues of biological, medical and pharmaceutical chemistry journal, vol. 21, no. 10, p. 91-97. (In Russian). DOI: https://doi.org/10.29296/25877313-2018-10-18
Neri, F., Pratella, G. C., Brigati S. 2003. Gli indici di maturazione per ottimizzare la qualità organolettica della frutta. (Ripening indices to optimize the organoleptic quality of fruit.). Rivista di Frutticoltura e di Ortof loricoltura, vol. 65, no. 5, p. 20-29. (In Italian).
Nishiyama, I., Fukuda, T., Shimohashi, A., Oota, T. 2008. Sugar and organic acid composition in the fruit juice of different Actinidia varieties. Food Science and Technology Recearch, vol. 14, no. 1, p. 67-73. https://doi.org/10.3136/fstr.14.67 DOI: https://doi.org/10.3136/fstr.14.67
Pandey, K. B., Rizvi, S. I. 2009. Plant polyphenols as dietary antioxidant in human health and disease. Oxidative Medicine and Cellular Longevity, vol. 2, p. 270-278. https://doi.org/10.4161/oxim.2.5.9498 DOI: https://doi.org/10.4161/oxim.2.5.9498
Pavarini, D., Pavarani, S., Niehues, M., Lopes, N. 2012. Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology, vol. 176, p. 5-16. https://doi.org/10.1016/j.anifeedsci.2012.07.002 DOI: https://doi.org/10.1016/j.anifeedsci.2012.07.002
Rasmussen, S. E., Frederiksen, H., Struntze Krogholm K., Poulsen L. 2005. Dietary proanthocyanidins: occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Molecular Nutrition and Food Research, vol. 49, p. 159-174. https://doi.org/10.1002/mnfr.200400082 DOI: https://doi.org/10.1002/mnfr.200400082
Ren, J., Han, E. J., Chung, S. H. 2007. In Vivo and In Vitro anti-inflammatory activities of α-linolenic acid isolated from Actinidia polygama fruits. Archived of Pharmacal Research, vol. 30, no. 708. https://doi.org/10.1007/BF02977632 DOI: https://doi.org/10.1007/BF02977632
Robbins, R. 2003. Phenolic acids in foods: an overview of analytical methodology. Journal of Agricultural and Food Chemistry, vol. 51, no. 10, p. 2866-2887. https://doi.org/10.1021/jf026182t DOI: https://doi.org/10.1021/jf026182t
Scalbert, A., Johnson, I. T., Saltmarsh, M. 2005. Polyphenols: Antioxidants and beyond. The American Journal of Clinical Nutrition, vol. 81, p. 215S-217S. https://doi.org/10.1093/ajcn/81.1.215S DOI: https://doi.org/10.1093/ajcn/81.1.215S
Sweetman, C., Deluc, L. G., Cramer, G. R., Ford, C. M., Soole K. L. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry, vol. 70, p. 1329-1344. https://doi.org/10.1016/j.phytochem.2009.08.006 DOI: https://doi.org/10.1016/j.phytochem.2009.08.006
Titlyanov, A. A. 1969. Actinidia and lemongrass. Vladivostok, Russia: Far Eastern Book Publishing House. 175 p.
Tzulker, R., Glazer, I., BarIlan, I., Holland, D., Aviram, M., Amir, R. 2007 Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. Journal of Agricultural and Food Chemistry, vol. 55, p. 9559-9570. https://doi.org/10.1021/jf071413n DOI: https://doi.org/10.1021/jf071413n
Usenik, V., Fabcic, J., Stampar, F. 2008. Sugars, arganic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chemistry, vol. 107, no. 1, p. 185-192. https://doi.org/10.1016/j.foodchem.2007.08.004 DOI: https://doi.org/10.1016/j.foodchem.2007.08.004
Velioglu, Y. S., Mazza, G., Gao, L., Oomah, B. D. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. Journal of Agricultural and Food Chemistry, vol.46, no. 10, p. 4113-4117. https://doi.org/10.1021/jf9801973 DOI: https://doi.org/10.1021/jf9801973
Wang, H., Cao, G. H., Prior, R. L. 1996. Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, vol. 44, p. 701-705. https://doi.org/10.1021/jf950579y DOI: https://doi.org/10.1021/jf950579y
Wang, Y., Zhao, C.-L., Li, J. Y., Liang, Y. J., Yang, R.-Q., Liu, J.-Y., Ma Zhi and Wu Lin. 2018. Evaluation of biochemical components and antioxidant capacity of different kiwifruit (Actinidia spp.) genotypes grown in China. Agriculture and Environmental Biotechnology, p. 558-565. https://doi.org/10.1080/13102818.2018.1443400 DOI: https://doi.org/10.1080/13102818.2018.1443400
Wojdyło, A., Nowicka, P., Oszmiańsk, J., Golis, T. 2017. Phytochemical compounds and biological effects of Actinidia fruits. Journal of Functional Foods, vol. 30, p. 194-202. https://doi.org/10.1016/j.jff.2017.01.018 DOI: https://doi.org/10.1016/j.jff.2017.01.018
Wu. B., Quilot. B., Kervella. J., Génard, M., Li S. 2003. Analysis of genotypic variation of sugar and acid contents in peaches and nectarines through the Principle Component Analysis. Euphytica, vol. 132, p. 375-384. https://doi.org/10.1023/A:1025089809421 DOI: https://doi.org/10.1023/A:1025089809421
Xu, C. M., Zhang, Y. L., Cao, L., Lu, J. 2010. Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chemistry, vol. 119, p. 1557-1565. https://doi.org/10.1016/j.foodchem.2009.09.042 DOI: https://doi.org/10.1016/j.foodchem.2009.09.042
Yeomans, V. C, Linseisen, J., Wolfram, G. 2005. Interactive effects of polyphenols, tocopherol and ascorbic acid on the Cu2+−mediated oxidative modification of human low density lipoproteins. European Journal of Nutrition, vol. 44, p. 422-428. https://doi.org/10.1007/s00394-005-0546-y DOI: https://doi.org/10.1007/s00394-005-0546-y
Zulueta, A., Esteve, M. J., Frígola, A. 2009. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chemistry, vol. 114, p. 310-316. https://doi.org/10.1016/j.foodchem.2008.09.033 DOI: https://doi.org/10.1016/j.foodchem.2008.09.033
Zuo, L.-L., Wang, Z.-Y., Fan, Z.-L., Tian, S.-Q., Liu, J.-R. 2012. Evaluation of antioxidant and antiproliferative properties of three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) extracts in vitro. Int. J. Mol. Sci. vol. 13, p. 5506-5518. https://doi.org/10.3390/ijms13055506 DOI: https://doi.org/10.3390/ijms13055506
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.