Potency of Okra flour (Abelmoschus esculentus) in improving adiponectin level and total antioxidant capacity of high fat diet streptozotocin rat model
DOI:
https://doi.org/10.5219/1136Keywords:
Okra, T2DM, adiponectin, TACAbstract
T2DM has increase in global-morbidity and mortality. Oxidative stress and adiponectin-levels are important for insulin-resistance and pancreatic-b-cell-dysfunction in T2DM. Okra fruit is rich of quercetin and phytosterol which have positive-effect for T2DM. Research aimed was to study the effect of okra-flour to adiponectin-levels and total-antioxidant-capacity (TAC) in T2DM. Thirty Wistar-rats were divided randomly in five groups. K1 and (X1, X2 and X3)-treated-groups were in T2DM-condition-induced by high-fat-diet-(HFD)-Streptozotochin-(STZ)-nicotinamid-(NA). Healthy-controls-(K2)-group was also used. Okra-flour was given orally for 28 days at doses of 0.1; 0.2 and 0.3 g/Kg-body-weight/d to X1, X2 and X3-groups, respectively. Statistical program was used to analyse the different between pre-post-intervention, and between groups. Correlations between variables were also analysed. The serum-adiponectin and TAC-levels were measured by ELISA and ABTS-methods, respectively. By comparing pre and post-intervention, adiponectin levels of all-intervention-(X1, X2, X3)-group were increase (p = 0.027 for X1 and X2; p = 0.028 for X3), while in the same period the decrease were found in group K1 (p = 0.026) and K2 (p = 0.028). Increase-TAC-levels pre-post-intervention was observed in group all-intervention-groups (p = 0.027), while no change in K1 (p = 0.66) and the decrease in group K2 (p = 0.039). Reduce-fasting-blood-glucose-levels pre-post-intervention were shown in the all-intervention-groups (p = 0.028), while for the K1 groups was increase (p = 0.028). There were significant differences between the five-groups on fasting-blood-glucose-levels, adiponectin and TAC-levels, and X3-group showed the highest adiponectin and TAC-levels. Very-strong-correlations were found between glucose-adiponectin-TAC-levels-post-intervention. Okra-flour make better glucose-adiponectin and TAC-levels in T2DM-conditions. Okra dose of 0.30 g/Kg-body-weight/day is the best in increasing adiponectin and TAC-levels.
Downloads
Metrics
References
Asghar, A. S. N. 2017. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol., vol. 315, p. 18-26. https://doi.org/10.1016/j.cellimm.2017.03.001 DOI: https://doi.org/10.1016/j.cellimm.2017.03.001
Bao, L., Zhang, Z., Dai, X., Ding, Y., Jiang, Y., Li, Y., Li, Y. 2015. Effects of grape seed proanthocyanidin extract on renal injury in type 2 diabetic rats. Mol. Med. Rep., vol. 11, no. 1, p. 645-52. https://doi.org/10.3892/mmr.2014.2768 DOI: https://doi.org/10.3892/mmr.2014.2768
Bermúdez-Pirela, V., Cano, C., Medina, M., Souki, A., Lemus, M., Leal, E., Seyfi, H., Cano, R., Ciscek, A., Bermúdez-Arias, F., Contreras, F., Israili, Z., Hernández-Hernández, R., Valasco, M. 2007. Metformin plus low-dose glimeperide significantly improves homeostasis model assessment for insulin resistance (HOMA(IR)) and beta-cell function (HOMA(beta-cell)) without hyperinsulinemia in patients with type 2 diabetes mellitus. Am. J. Ther., vol. 14, no. 2, p. 194-202. https://doi.org/10.1097/01.pap.0000249909.54047.0e DOI: https://doi.org/10.1097/01.pap.0000249909.54047.0e
Bowe, J. E., Franklin, Z. J., Hauge-Evans, A. C., King, A. J., Persaud, S. J., Jones, P. M. 2014. Assessing glucose homeostasis in rodent models. J. Endocrinol, vol. 222, no. 3, p. G13-G25. https://doi.org/10.1530/JOE-14-0182 DOI: https://doi.org/10.1530/JOE-14-0182
Cheng, K. K. Y., Lam, K. S. L., Wang, B., Phil, M., Xu, A. 2014. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Practice and Research: Clinical Endocrinology and Metabolism. vol. 28, no. 1, p. 3-13. https://doi.org/10.1016/j.beem.2013.06.006 DOI: https://doi.org/10.1016/j.beem.2013.06.006
Dornellas, A. P. S., Watanabe, R. L. H., Pimentel, G. D., Boldarine, V. T., Nascimento, C. M. O., Oyama, L. M., Ghebremeskel, K., Wang, Y., Bueno, A. A., Ribeiro, E. B. 2015. Prostaglandins , Leukotrienes and Essential Fatty Acids Deleterious effects of lard-enriched diet on tissues fatty acids composition and hypothalamic insulin actions $. Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 102-103, p. 21-29. http://doi.org/10.1016/j.plefa.2015.10.003 DOI: https://doi.org/10.1016/j.plefa.2015.10.003
Gallagher, A. M., Flatt, P. R., Duffy, G. A. W. Y. 2003. The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutr. Res., vol. 23, p. 413-424. https://doi.org/10.1016/S0271-5317(02)00533-X DOI: https://doi.org/10.1016/S0271-5317(02)00533-X
Ghasemi, A., Khalifi, S. J. S. 2014. Streptozotocin-nicotiamid-induced rat model of type 2 diabetes. Acta Physiol. Hung., vol. 101, p. 408-20. https://doi.org/10.1556/APhysiol.101.2014.4.2 DOI: https://doi.org/10.1556/APhysiol.101.2014.4.2
Kim, Y. A., Koegh, J. B. C. P. 2016. Polyphenol and glycemic control. Nutrients, vol. 8, p. 1-27. https://doi.org/10.3390/nu8010017 DOI: https://doi.org/10.3390/nu8010017
Lim, S., Song, K., Yoo, C., Woo, D., Choe, B. 2018. High fat diet induced hyperglutamatergic activation of the hippocampus in mice : a proton magnetic resonance spectroscopy study at 9.4T. Neurochemistry International, vol. 114, p. 9-16. https://doi.org/10.1016/j.neuint.2017.12.007 DOI: https://doi.org/10.1016/j.neuint.2017.12.007
Maritim, A., Dene, B. A., Sanders, R. A., Watkins, J. B. 2002. Diabetes, oxidative stress and antioxidants. Journal of Biochemical and Molecular Toxicology, vol. 16, no. 4, p. 203-208. https://doi.org/10.1002/jbt.10058 DOI: https://doi.org/10.1002/jbt.10038
Melton, J. 2017. IDF Diabetes Atlas Eighth Edition 2017. Available at: http://diabetesatlas.org/resources/2017-atlas.html
Moheildein, A. H., Hasan, M., Al-harbi, K. K., Alodailah, S. S., Azahrani, R. M. 2015. Diabetes and Metabolic Syndrome : Clinical research & reviews dyslipidemia and reduced total antioxidant status in young adults Saudis with prediabetes. Diabetes Metab. Syndr. Clin. Res. Rev., vol. 9, no. 4, p. 287-291. https://doi.org/10.1016/j.dsx.2014.04.017 DOI: https://doi.org/10.1016/j.dsx.2014.04.017
Naeem, E., Mohammad, R., Ali, S. 2018. Okra (Abelmoscus esculentus) Improved Islets Structure, and Down-Regulated PPARs Gene Expression in Pancreas of High-Fat Diet and Streptozotocin-Induced Diabetic Rats. Cell J., vol. 20, no. 1, p. 32-33. https://doi.org/10.22074%2Fcellj.2018.4819
Nagarchi, K., Ahmed, S., Sabus, A., Saheb, S. H. 2015. Effect of Streptozotocin on Glucose levels in Albino Wister Rats. J. Pharm. Sci. & Res., vol. 7, no. 2, p. 67-69.
Rodrigues, L., Mouta, R., Costa, A. R., Pereira, A., Capela e Silva, F., Amado, F., Antunes, C., Lamy, E. 2015. Effects of high fat diet on salivary a -amylase , serum parameters and food consumption in rats. Arch. Oral. Biol., vol. 60, no. 6, p. 854-862. http://doi.org/10.1016/j.archoralbio.2015.02.015 DOI: https://doi.org/10.1016/j.archoralbio.2015.02.015
Roopchanda, D. E., Carmody, R. N., Kuhn, P., Moskal, K., Rojas-Silva, P., Turnbaugh, P. J., Raskin, I. 2015. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high fat diet-induced metabolic syndrome. Diabetes, vol. 64, no. 8, p. 2847-2858. https://doi.org/10.2337/db14-1916 DOI: https://doi.org/10.2337/db14-1916
Sa’eed Halilu Bawa, N. B. 2016. Nutrient profile, bioactive components, and functional properties of okra (Abelmoschus esculentus (L.) Moench). In Watson. R. R., Preedy, V. R. Bioactive Foods in Health Promotion. Cambridge, USA : Academic Press, p. 365-409. ISBN 978-0-12-802972-5. http://doi.org/10.1016/B978-0-12-802972-5.00018-4 DOI: https://doi.org/10.1016/B978-0-12-802972-5.00018-4
Sabitha, V., Ramachandran, S., Naveen, K. R. 2012. Investigation of in Vivo Antioxidant Property of Abelmoschus Esculentus (L) Moench. Fruit Seed and Peel Powders in StreptozotocinInduced Diabetic Rats. Journal of Ayurveda & Integrative Medicine, vol. 3, no. 4, p. 188-193. https://doi.org/10.4103/0975-9476.104432 DOI: https://doi.org/10.4103/0975-9476.104432
Sheu, S. C., Lai, M. 2012. Composition analysis and immuno-modulatory effect of Okra (Abelmoschus esculentus L.) extract. Food Chem., vol. 134, no. 4, p. 1906-1911. https://doi.org/10.1016/j.foodchem.2012.03.110 DOI: https://doi.org/10.1016/j.foodchem.2012.03.110
Skovso, S. 2014. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J. Diabetes Investig., vol. 5, no. 4, p. 349-58. https://doi.org/10.1111/jdi.12235 DOI: https://doi.org/10.1111/jdi.12235
Styskal, J., Van Remmen, H., Richardson, A. S. A. 2012. Oxidative stress and diabetes: What can we learn about insulin resistance from antioxidant mutant mouse models. Free Radic. Biol. Med., vol. 52, no. 1, p. 46-58. http://doi.org/10.1016/j.freeradbiomed.2011.10.441 DOI: https://doi.org/10.1016/j.freeradbiomed.2011.10.441
Suica-Bunghez, I. R., Teodorescu, S., Dulama, I. D., Voinea, O. C., Imionescu, S., Ion, R. M. 2016. Antioxidant activity and phytochemical compounds of snake fruit (Salacca Zalacca). International Conference on Innovative Research, vol. 133, p. 1-8. https://doi.org/10.1088/1757-899X/133/1/012051 DOI: https://doi.org/10.1088/1757-899X/133/1/012051
WHO. 2016. General Guidelines for Metodologies on Research and Evaluation of Traditional Medicine. Geneva : WHO.
Zhang, Z. L. 2014. Antioxidative and Glucose Homeostatic Effects of Extracts and Isolated Components from Okra (Abelmoschus Esculentus Fruits). Taiwan : Tunghai University.
Zhou, Y., Tang, Y., Song, Y., Li, A., Zhou, H., Li, Y. 2013. Saturated Fatty Acid Induces Insulin Resistance Partially Through Nucleotide-binding Oligomerization Domain 1 Signaling Pathway in Adipocytes. Chin. Med. Sci. J., vol. 28, no. 4, p. 211-217. https://doi.org/10.1016/S1001-9294(14)60004-3 DOI: https://doi.org/10.1016/S1001-9294(14)60004-3
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.