Comparative study of some bioactive compounds and their antioxidant activity of some berry types

Authors

  • Amina Aly Natural Products Dept., National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. 29, Nasr City, Cairo- Egypt, Tel.: + 202-22749298 https://orcid.org/0000-0003-0756-731X
  • Rabab Maraei Natural Products Dept., National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. 29, Nasr City, Cairo- Egypt, Tel.: + 202-22749298 https://orcid.org/0000-0003-3295-8806
  • Omneya Abou El-Leel Agriculture Research Center, Giza- Egypt https://orcid.org/0000-0003-2998-0885

DOI:

https://doi.org/10.5219/1132

Keywords:

berries, bioactive compounds, phenolic compounds, antioxidant activity

Abstract

Berries are wealthy in bioactive compounds like phenolic compounds and flavonoids that are deemed antioxidants and are great important to health. This research was performed to examine, recognize and compare bioactive compounds in certain types of berries and their antioxidant activity. The data show that blue berry, black berry and Egyptian black mulberry contain the highest content of most bioactive compounds such as phenolic compounds, flavonoids and tannins, while long mulberry and red currant berry have the lowest content for most of these compounds. They therefore, contain the highest value of antioxidant activity. The chemical composition of the berries varies depending on cultivar, variety, location of growth, environmental conditions and harvest time, as well as post-harvest treatments therefore the composition differed from berry fruit to another. Thus, berry fruits are very useful in nutrition to protect the body from many diseases because of its containment of these compounds, which act as free radicals scavenger that harm the body and thus rid the body of many harmful toxins.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alam, M. K., Rana, Z. H., Islam, S. N., Akhtaruzzaman, M. 2019. Total phenolic content and antioxidant activity of methanolic extract of selected wild leafy vegetables grown in Bangladesh: A cheapest source of antioxidants. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 287-293. https://doi.org/10.5219/1107 DOI: https://doi.org/10.5219/1107

Aly, A. A., Ali, H. G. M., Eliwa, N. E. R. 2019. Phytochemical screening, anthocyanins and antimicrobial activities in some berries fruits. J. Food Measurement and Characterization, vol. 13, no. 2, p. 911-920. https://doi.org/10.1007/s11694-018-0005-0 DOI: https://doi.org/10.1007/s11694-018-0005-0

Andreasen, M., Landbo, A. K., Christensen, L., Hansen, A., Meyer, A. 2001. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. J. Agricultural and Food Chemistry, vol. 49, no. 8, p. 4090-4096. https://doi.org/10.1021/jf0101758 DOI: https://doi.org/10.1021/jf0101758

Anttonen, M. J., Karjalainen, R. O. 2005. Environmental and genetic variation of phenolic compounds in red raspberry. J. Food Comp. Anal., vol. 18, p. 759-769. https://doi.org/10.1016/j.jfca.2004.11.003 DOI: https://doi.org/10.1016/j.jfca.2004.11.003

Balasundram, N., Sundram, K., Samman, S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem., vol. 99, no. 1, p. 191-203. https://doi.org/10.1016/j.foodchem.2005.07.042. DOI: https://doi.org/10.1016/j.foodchem.2005.07.042

Beekwilder, J., Hall, R. D., Ric de Vos, C. H. 2005. Identification and dietary relevance of antioxidants from raspberry. Biofactors, vol. 23, p. 197-205. https://doi.org/10.1002/biof.5520230404 DOI: https://doi.org/10.1002/biof.5520230404

Bhat, S. V., Nagasampagi, B. A., Sivakumar, M. 2005. Chemistry of natural products. ChemBioChem, vol. 6 no. 6, p. 1127-1128. https://doi.org/10.1002/cbic.200500134 DOI: https://doi.org/10.1002/cbic.200500134

Bobinaitė, R., Viškelis, P., Venskutonis, P. R. 2012. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry, vol. 132, no. 3, p. 1495-1501. https://doi.org/10.1016/j.foodchem.2011.11.137 DOI: https://doi.org/10.1016/j.foodchem.2011.11.137

Brindza, J., Grygorieva, O., Klymenko, S., Vergun, O., Mareček, J., Ivanišová, E. 2019. Variation of fruits morphometric parameters and bioactive compounds of Asimina triloba (L.) dunal germplasm collection. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 1-7. https://doi.org/10.5219/1019 DOI: https://doi.org/10.5219/1019

Buege, J. A., Aust, S. D. 1978. Microsomal lipid peroxidation. Methods in Enzymol., vol. 52, p. 302–310. https://doi.org/10.1016/S0076-6879(78)52032-6 DOI: https://doi.org/10.1016/S0076-6879(78)52032-6

Burdulis, D., Sarkinas, A., Jasutiene, I., Stackeviciene, E., Nikolajevas, L., Janulis, V. 2009. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) Fruits. Acta Poloniae Pharmaceutica, vol. 66, no. 4, p. 399-408.

Deighton, N., Brennan, R., Finn, C., Davies, H. V. 2000. Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agric., vol. 80, p. 1307-1313. https://doi.org/10.1002/1097-0010(200007)80:9<1307::AID-JSFA638>3.0.CO;2-P DOI: https://doi.org/10.1002/1097-0010(200007)80:9<1307::AID-JSFA638>3.0.CO;2-P

Diaconeasa, Z., Ranga, F., Rugina, D., Leopold, L., Pop, O., Vodnar, D., Cuibus, L., Socaciu, C. 2015. Pheolic content and their antioxidant activity in various berries cultivated in Romania. Bulletin UASVM Food Science and Technology, vol. 72, no. 1, p. 99-103. https://doi.org/10.15835/buasvmcn-fst:11127 DOI: https://doi.org/10.15835/buasvmcn-fst:11127

Duncan, D. B. 1955. Multiple range and multiple ’F’ tests. Biometrics, vol. 11, no. 1, p. 1-42. https://doi.org/10.2307/3001478 DOI: https://doi.org/10.2307/3001478

Engels, C., Schieber, A., Ganzle, M. G. 2012. Sinapic acid derivatives in defatted oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MSn and identification of compounds with antibacterial activity. Eur. Food. Res. Technol., vol. 234, no. 3, p. 535-542. https://doi.org/10.1007/s00217-012-1669-z DOI: https://doi.org/10.1007/s00217-012-1669-z

Giovanelli, G., Buratti, S. 2009. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem., vol. 112, no. 4, p. 903-908. https://doi.org/10.1016/j.foodchem.2008.06.066 DOI: https://doi.org/10.1016/j.foodchem.2008.06.066

Govindaraghavan, S. 2014. Pharmacopeial HPLC identification methods are not sufficient to detect adulterations in commercial bilberry (Vaccinium myrtillus) extracts. Anthocyanin profile provides additional clues. Fitoterapia, vol. 99, p. 124-138. https://doi.org/10.1016/j.fitote.2014.09.007 DOI: https://doi.org/10.1016/j.fitote.2014.09.007

Gulluce, M., Sokmen, M., Sahin, F., Sokmen, A., Adiguzel, A., Ozer, H. 2004. Biological activi¬ties of the essential oil and methanolic extract of Mi¬cromeria fruticosa (L) Druce ssp serpy llifolia (Bieb) PH davis plants from the Eastern Anatolia region of Turkey. J. Sci. Food Agric., vol. 84, no. 7, p. 735-741. https://doi.org/10.1002/jsfa.1728 DOI: https://doi.org/10.1002/jsfa.1728

Huang, W., Zhang, H., Liu, W., Li, C. 2012. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B, vol. 13, no. 2, p. 94-102. https://doi.org/ 10.1631/jzus.B1100137 DOI: https://doi.org/10.1631/jzus.B1100137

Hudson, E. A., Dinh, P. A., Kokubun, T., Simmonds, M. S. J., Gescher, A. 2000. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Prev., vol. 9, no. 11, p. 1163-1170.

Chen, A. Y., Chen, Y. C. 2013. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem., vol. 138, no. 4, 2099-2107. https://doi.org/10.1016/j.foodchem.2012.11.139 DOI: https://doi.org/10.1016/j.foodchem.2012.11.139

Chew, Y. L., Goh, J. K., Lim, Y. Y. 2009. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem., vol. 116, no. 1, p. 13-18. https://doi.org/10.1016/j.foodchem.2009.01.091 DOI: https://doi.org/10.1016/j.foodchem.2009.01.091

Lachowicz, S., Kolniak-Ostek, J., Oszmianski, J., Wisniewski, R. 2017. Comparison of phenolic content and antioxidant capacity of bear garlic (Allium ursinum L.) in different maturity stages. J. Food Processing and Preservation, vol. 41, no. 1, p. 1-10. https://doi.org/10.1111/jfpp.12921 DOI: https://doi.org/10.1111/jfpp.12921

Lim, S. Y., Meyer, M., Kjonaas, R. A., Ghosh, S. K. (2006). Phytol-based novel adjuvants in vaccine formulation: 1. assessment of safety and efficacy during stimulation of humoral and cell-mediated immune responses. J. Immune Based Ther. Vaccines, vol. 4, p. 6-8. https://doi.org/10.1186/1476-8518-4-6 DOI: https://doi.org/10.1186/1476-8518-4-6

Maher, P. 2015. Fisetin Acts on Multiple Pathways to Reduce the Impact of Age and Disease on CNS Function. Front Biosci., vol. 7, p. 58-82. DOI: https://doi.org/10.2741/s425

Marinova, D., Ribarova, F., Atanassova, M. 2005. Total phenolic and total flavonoids in Bul¬garian fruits and vegetables. J.. Uni. Chem. Technol. Metal., vol. 40, no. 3, p. 255-260.

Nile, S. H., Park, S. W. 2014. Edible berries: Bioactive components and their effect on human health. Nutrition, vol. 30, no. 2, p. 134-144. https://doi.org/10.1016/j.nut.2013.04.007 DOI: https://doi.org/10.1016/j.nut.2013.04.007

Oszmianski, J., Lachowicz, S. 2016. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules, vol. 21, p. 1-14. https://doi.org/10.3390/molecules21081098 DOI: https://doi.org/10.3390/molecules21081098

Oyaizu, M. 1986. Studies on products of brown¬ing reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jap. J. Nut., vol. 44, p. 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307 DOI: https://doi.org/10.5264/eiyogakuzashi.44.307

Price, M. L., Van Scoyoc, S., Butler, L. G. 1978. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem., vol. 26, no. 5, p. 1214-1218. https://doi.org/10.1021/jf60219a031 DOI: https://doi.org/10.1021/jf60219a031

Ryu, K. R., Choi, J. Y., Chung, S., Kim, D. H. 2011. Anti-scratching behavioral effect of the essential oil and phytol isolated from Artemisia princeps Pamp in mice. Planta Med., vol. 77, no. 1, p. 22-26. https://doi.org/10.1055/s-0030-1250119 DOI: https://doi.org/10.1055/s-0030-1250119

Santos, C. C., Salvadori, M. S., Mota, V. G., Costa, L. M., de Almeida, A. A., de Oliveira, G. A., Costa, J. P., de Sousa, D. P., de Freitas, R. M., de Almeida, R. N. 2013. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neuroscience J., vol. 2013, p. 1-9. https://doi.org/10.1155/2013/949452 DOI: https://doi.org/10.1155/2013/949452

Sellappan, S., Akoh, C. C., Krewer, G. 2002. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem., vol. 50, no 8, p. 2432-2438. https://doi.org/10.1021/jf011097r DOI: https://doi.org/10.1021/jf011097r

Shahidi, F., Naczk, M. 1995. Methods of anal¬ysis and quantification of phenolic compounds. Food phenolic: sources, chemistry, effects and applications. Lan¬caster, England : Technomic Publishind Company, Inc, 287 p.

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., Sochor, J. 2015. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci., vol. 16, no. 10, p. 24673-24706. https://doi.org/10.3390/ijms161024673 DOI: https://doi.org/10.3390/ijms161024673

Starast, M., Karp, K., Vool, E., Moor, U., Tonutare, T., Paal, T. 2007. Chemical composition and quality of cultivated and natural blueberry fruit in Estonia. Vegetable Crops Research Bulletin, vol. 66, no. 1, p. 143-153. https://doi.org/10.2478/v10032-007-0016-6 DOI: https://doi.org/10.2478/v10032-007-0016-6

Sung, B., Chung, H. Y., Kim, N. D. 2016. Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J. Cancer Prev., vol. 21, no. 4, p. 216-226. https://doi.org/10.15430/JCP.2016.21.4.216 DOI: https://doi.org/10.15430/JCP.2016.21.4.216

van Breda, S. G. J., Briedé, J. J., de Kok, T. M. C. M. 2019. Improved preventive effects of combined bioactive compounds present in different blueberry varieties as compared to single phytochemicals. Nutrients, vol. 11, no. 1, p. 1-14. https://doi.org/10.3390/nu11010061 DOI: https://doi.org/10.3390/nu11010061

Vuong, Q. V., Pham, H. N. T., Vu, H. T., Dang, T. T., Ngo, T. V., Chalmers, A. C. 2018. Fruit characteristics, phytochemical and antioxidant properties of blueberry ash (Elaeocarpus reticulatus). Heliyon, vol. 4, no. 10, p. 1-16. https://doi.org/10.1016/j.heliyon.2018.e00834 DOI: https://doi.org/10.1016/j.heliyon.2018.e00834

Wu, Y. Y., Li, W., Xu, Y., Jin, E. H., Tu, Y. Y. 2011. Evaluation of the antioxidant effects of four main theaflavin derivatives through chemiluminescence and DNA damage analyses. J. Zhejiang Univ. Sci. B, vol. 12, no. 9, p. 744-751. https://doi.org/10.1631/jzus.B1100041 DOI: https://doi.org/10.1631/jzus.B1100041

Yamagishi, S., Matsui, T. 2011. Nitric oxide, a janus-faced therapeutic target for diabetic microangiopathy-Friend or foe? Pharmacol. Res., vol. 64, no. 3, p. 187-194. https://doi.org/10.1016/j.phrs.2011.05.009 DOI: https://doi.org/10.1016/j.phrs.2011.05.009

Yermakov, A. I., Arasimov, V. V., Yarosh, N. P. 1987. Methods of biochemical analysis of plants. Leningrad, Russia : Agropromizdat, p. 122-142 (in Russian).

Yun, K. J., Koh, D. J., Kim, S. H., Park, S. J., Ryu, J. H., Kim, D. G., Lee, J. Y., Lee, K. T. 2008. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-κB inactivation. J. Agric Food Chem., vol. 56, no. 21, p. 10265-10272. https://doi.org/10.1021/jf802095g DOI: https://doi.org/10.1021/jf802095g

Zadernowski, R., Naczk, M., Nesterowicz, J. 2005. Phenolic acid profiles in some small berries. J. Agric. Food Chem., vol. 53, no. 6, p. 2118-2124. https://doi.org/10.1021/jf040411p DOI: https://doi.org/10.1021/jf040411p

Zou, Y., Kim, A. R., Kim, J. E., Choi, J. S., Chung, H. Y. 2002. Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) isolated from Brassica juncea. J. Agric Food Chem., vol. 50, no. 21, p. 5884-5890. https://doi.org/10.1021/jf020496z DOI: https://doi.org/10.1021/jf020496z

Published

2019-06-28

How to Cite

Aly, A., Maraei, R., & Abou El-Leel, O. (2019). Comparative study of some bioactive compounds and their antioxidant activity of some berry types . Potravinarstvo Slovak Journal of Food Sciences, 13(1), 515–523. https://doi.org/10.5219/1132

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.