Antioxidant properties of cumin (Bunium persicum Boiss.) extract and its protective role against abiotic stress tested by microRNA markers

Authors

  • Katarí­na Ražná Slovak University of Agriculture. Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Nishonoy Khasanova National University of Uzbekistan, Faculty of Biology, Department of Microbiology and Biotechnology, Mirzo Ulugbek 100174, Almazar district, Tashkent city
  • Eva Ivanišová Slovak University of Agriculture, Faculty of Biotechnology and Food Science, Department of Storage and Processing Plant Products. Tr. A. Hlinku 2, 949 76 Nitra
  • Davranov Qahramon National University of Uzbekistan, Faculty of Biology, Department of Microbiology and Biotechnology, Mirzo Ulugbek 100174, Almazar district, Tashkent city
  • Miroslav Habán Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Sustainable Agriculture and HerbologyTr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/838

Keywords:

cumin, antioxidant, ultrasound, microRNA marker

Abstract

Bunium persicum Boiss. seeds have been used for medicinal and nutritional properties such as antioxidant, antihelmetic and antimicrobial activity. The aim of this study was to to tested protective role of cumin extract against abiotic stress by microRNA markers. Secondary also was to evaluate antioxidant activity as well as total polyphenol, flavonoid and phenolic acid content of cumin extract. We observed that cumin DNA itself has not been damaged by sonication teratment. This protective impact indicates that cumin antioxidant properties can efficiently quench free radicals induced by sonication. On the other side, ultrasound-mediated formation of reactive oxygen species did induce the DNA polymorphism of lettuce samples which was detected by miRNAs-based markers. The range of sonication impact was time-dependent. Markers based of miRNA-DNA sequences has proven to be an effective tool. We have confirmed statistically significant differences (p ≤0.01) in miRNAs markers ability to detect the polymorphism due to sonication treatment.  The antioxidant activity was determined by a method using DPPH radical and phosphomolybdenum method, total polyphenol content with Folin - Ciocalteu reagent, total flavonoid with aluminium-chloride mehod and total phenolic acid with Arnova reagent. Results showed that cumin is rich for biologically active substances and can be used more in different kind of industry as a cheap source of these substances. Antioxidant activity with DPPH method was 1.18 mg TEAC.g-1 (TEAC - Trolox equivalent antioxidant capacity per g of sample) and by phosphomolybdenum method 45.23 mg TEAC.g-1. Total polyphenol content achieved value 4.22 mg GAE.g-1 (GAE - gallic acid equivalent per g of sample), total flavonoid content value 10.91 mg QE.g-1 (QE - quercetin equivalent per g of sample) and total phenolic acid content value 5.07 mg CAE.g-1 (CAE - caffeic acid equivalent per g of sample).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdollahi, A., Domhan, S., Jenne, J. W., Hallaj, M., Dell´Aqua, G., Mueckenthaler, M., Richter, A., Martin, H., Debus, J., Ansorqe, W., Hynynen, K., Huber, P. E. 2004. Apoptosis signals in lymphoblasts induced by focused ultrasound. The FASEB Journal, vol. 18, no. 12, p. 1413-1414. https://doi.org/10.1096/fj.04-1601fje DOI: https://doi.org/10.1096/fj.04-1601fje

Ani, V., Varadaraj, M. C., Naidu Akhilender, K. 2006. Antioxidant and antibacterial activiries of polyphenolic compounds from bitter cumin (Cuminum nigrum L.). European Food Research and Technology, vol. 224, p. 109-115. https://doi.org/10.1007/s00217-006-0295-z DOI: https://doi.org/10.1007/s00217-006-0295-z

Barvkar, V. T., Pardeshi, V. C., Kale, S. M., Qiu, S., Rollins, M., Datla, R., Kadoo, N. Y. 2013. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes. Planta, vol. 237, no. 4, p. 1149-161. https://doi.org/10.1007/s00425-012-1833-5 DOI: https://doi.org/10.1007/s00425-012-1833-5

Barlow, S. M. 1990. Toxicological Aspects of Antioxidants Used as Food Additives. In: Hundson, B. J. Food Antioxidants. Amsterdam, Netherlands : Springer Netherlands, p. 253-307. ISBN 978-94-010-6824-6. https://doi.org/10.1007/978-94-009-0753-9_7 DOI: https://doi.org/10.1007/978-94-009-0753-9_7

Bej, S., Basak, J. 2014. MicroRNAs: The potential biomarkers in plant stress response. American Journal of Plant Sciences, vol. 5, p. 748-759. https://doi.org/10.4236/ajps.2014.55089 DOI: https://doi.org/10.4236/ajps.2014.55089

Bhattacharya, S. 2015. Conventional and Advanced Food Processing Technologies. Chapter 21. In Jambrak, A. R. et al. Application of Ultrasonics in Food Preservation and Processing. Hoboken, New Jersey, USA : John Wiley and Sons, Ltd. p. 515-536. ISBN 9781118406281. DOI: https://doi.org/10.1002/9781118406281.ch21

da Silva, J. A. T, Dobranszki, J. 2014. Sonication and ultrasound: impact on plant growth and development. Plant Cell, Tissue and Organ Culture, vol. 117, no. 2, p. 131-143. https://doi.org/10.1007/s11240-014-0429-0 DOI: https://doi.org/10.1007/s11240-014-0429-0

Chizzola, R., Saeidnejad, A. H., Azizi, M., Oroojalian, F., Mardan, H. 2014. Bunium persicum: variability in essential oil and antioxidant acitivty of fruits different Iranian wild populations. Genetic Resources and Crop Evolution, vol. 61, no. 8, p. 1621-1631. https://doi.org/10.1007/s10722-014-0158-6 DOI: https://doi.org/10.1007/s10722-014-0158-6

Dua, A., Gupta, S. K., Mittal, A., Mahajan, R. 2012. A study of antioxidant properties and antioxidant compounds of cumin. International Journal of Pharmaceutical and Biological Archives, vol. 3, no. 5, p. 1110-1116.

Farmakopea Polska. 1999. 5th ed. Warszawa, Poland : PTFarm. 664 p.

Fatemi, F., Dadkhah, A., Rezaei, M. B., Dini, S. 2013. Effect of ɣ-irradiation on the chemical composition and antioxidant properties of cumin extracts. Journal of Food Biochemistry, vol. 37, no. 4, p. 432-439. https://doi.org/10.1111/j.1745-4514.2011.00641.x DOI: https://doi.org/10.1111/j.1745-4514.2011.00641.x

Juhaimi, F. A., Uslu, N., Özcan, M. M. 2017. The effect of preultrasonic process on oil content and fatty acid composition of hazelnut, peanut and black cumin seeds. Journal of Food Processing and Preservation, vol. 42, no. 1, p. 1-4. DOI: https://doi.org/10.1111/jfpp.13335

Kantar, M., Unver, T., Budak, H. 2010. Regulation of Barley miRNAs upon dehydration stress correlated with target gene expression. Functional and Integrative Genomics, vol. 10, no. 4, p. 493-507. https://doi.org/10.1007/s10142-010-0181-4 PMid:20676715 DOI: https://doi.org/10.1007/s10142-010-0181-4

Kareshk, A. T., Keyhani, A., Mahmouduand, H., Oliaei, R. T., Asadi, A., Andishmand, M., Azzizian, H., Babaei, Z., Ziaali, N. 2015. Efficacy of the Bunium persicum Boiss. essential oil against Toxoplasmosis in mice model. Iran Journal of Parasitology, vol. 10, no. 4, p. 625-631.

Klimešová, M., Horáček, J., Ondřej, M., Manga, I., Koláčková, L., Nejeschlebová, Ľ., Ponížil, A. 2015. Microbial contamination of spice sused in production of meat products. Potravinárstvo, vol. 9, no. 1, p. 154-159. https://doi.org/10.5219/440 DOI: https://doi.org/10.5219/440

Kruszka, K., Pieczynski, M., Windels, D., Bielewicz, D., Jarmolowski, A., Kulinska-Szweykowska, Z., Vazquez, F. 2012. Role of microRNAs and other sRNAs of plants in their changing environments. Journal of Plant Physiology, vol. 169, no. 16, p. 1664-1672. https://doi.org/10.1016/j.jplph.2012.03.009 PMid:22647959 DOI: https://doi.org/10.1016/j.jplph.2012.03.009

Lee, L. J., Abdullah, M. 2014. Optimization of genomic DNA shearing by sonication for next-generation sequencing library preparation. Asia-Pacific Journal of Molecular Biology and Biotechnology, vol. 22, no. 3, p. 200-208.

Lu, S., Sun, Y., Shi, R., Clark, C., Li, L., Chiang, V. 2005. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, vol. 17, no. 8, p. 2186-2203. https://doi.org/10.1105/tpc.105.033456 PMid:15994906 DOI: https://doi.org/10.1105/tpc.105.033456

Milowska, K., Gabryelak, T. 2007. Reactive oxygen species and DNA damage after ultrasound exposure. Biomolecular Engineering, vol. 24, no. 2, p. 263-267. https://doi.org/10.1016/j.bioeng.2007.02.001 PMid:17353145 DOI: https://doi.org/10.1016/j.bioeng.2007.02.001

Padmalatha, K, Prasad, M. N. V. 2005. Optimization of DNA isolationand PCR protocol for RAPD analysis of selected medicinal and aromatic plants of conservation concern from Peninsular India. African Journal Biotechnology, vol. 5, no. 3, p. 230-234.

Panwar, K. 2000. Black caraway. In Arya P. S. Spice crops of India. New Delhi : Kalyani Publishers, p. 172-178.

Prieto, P., Pineda, M., Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, vol. 269, no. 2, p. 337-341. https://doi.org/10.1006/abio.1999.4019 PMid:10222007 DOI: https://doi.org/10.1006/abio.1999.4019

Riesz, P., Kondo, T. 1992. Free radical formation induced by ultrasound and its biological implications. Free Radical Biology and Medicine, vol. 13, no. 3, p. 247-270. https://doi.org/10.1016/0891-5849(92)90021-8 DOI: https://doi.org/10.1016/0891-5849(92)90021-8

Rogers, S. O., Bendich, A. J. 1994. Extraction of total cellular DNA from plants, algae and fungi. Plant molecular biology Manual, p. 183-190. https://doi.org/10.1007/978-94-011-0511-8_12 DOI: https://doi.org/10.1007/978-94-011-0511-8_12

Rokhina, E. V., Lens, P., Virkutyte, J. 2009. Low-frequency ultrasound in biotechnology: state of the art. Trends in Biotechnology, vol. 27, no. 5, p. 298-299. https://doi.org/10.1016/j.tibtech.2009.02.001 PMid:19324441 DOI: https://doi.org/10.1016/j.tibtech.2009.02.001

Saeed, N., Khan, M. R., Shabbir, M. 2012. Antioxidant activity, totalphenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, vol. 12, p. 221. https://doi.org/10.1186/1472-6882-12-221 DOI: https://doi.org/10.1186/1472-6882-12-221

Sambrook, J., Russell, D. W. 2006. Fragmentation of DNA by sonication. CSH protocols, vol. 2006, no. 4. DOI: https://doi.org/10.1101/pdb.prot4538

SAS 2009. Users guide version 9. 2. SAS/stat (r) SAS institute inc. cary, nc, USA.

Shapira, Z., Terkel, J., Egozi, Y., Nyska, A., Friedman, J. 1989. Abortifacient potential for the epigeal parts of Peganum harmala. Journal of Ethnopharmacology, vol. 27, no. 3, p. 319-325. https://doi.org/10.1016/0378-8741(89)90006-8 DOI: https://doi.org/10.1016/0378-8741(89)90006-8

Sánchés­Moreno, C., Larrauri, A., Saura-Calixto, F. 1998. A procedure to measure the antioxidant efficiency of polyphenols. Journal of the Science of Food and Agriculture, vol. 76, no. 2, p. 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9

Seri, A., Khorsand, M., Rezaei, Z., Hamedi, A., Takhshid, M. A. 2017. Inhibitory effect of Bunium persicum hydroalcoholic extract on glucose-induced albumin glycation, oxidation and aggregation in vitro. Iran Journal of Medical Sciences, vol. 42, no. 4, p. 369-376. PMid:28761203

Shahsavari, N., Barzegar, M., Sahari, M. A., Naghdibadi, H. 2008. Antioxidant activity and chemical characterisation of essential oil of Bunium persicum. Plant Foods for Human Nutrition, vol. 63, no. 4, p. 183-188. https://doi.org/10.1007/s11130-008-0091-y PMid:18810640 DOI: https://doi.org/10.1007/s11130-008-0091-y

Sharififar, F., Yassa, N., Mozaffarian, V. 2010. Bioactivity of major components from the seeds of Bunium persicum Boiss. Pakistan Journal of Pharmaceutical Sciences, vol. 23, no. 3, p. 300-309. PMid:20566444

Schafer, F. Q., Kelly E. E., Buettner, G. R. 2003. Oxidative stress and antioxidant intervention. In: Cutler, R. G. et al. Critical Reviews of Oxidative Stress and Aging: Advances in Basic Science, Diagnostics and Intervention. New Jersey, London, Singapore, Hong Kong : World Scientific, p 849-869. ISBN 981-02-4636-6. DOI: https://doi.org/10.1142/9789812775733_0049

Simone, N. L., Soule, B. P, Ly, D., Saleh, A. D., Savage, J. E., Degraff, W., Cook, J., Harris, C. C., Gius, D., Mitchell, J. B. 2009. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One, vol. 4, no. 7, p. e6377. https://doi.org/10.1371/journal.pone.0006377 PMid:19633716 DOI: https://doi.org/10.1371/journal.pone.0006377

Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Agricultural, vol. 16, p. 144-158.

Souri, E., Amin, G., Farsam, H., Barazandeh, T. M. 2008. Screening of antioxidant activity and phenolic content of 24 medicinal plant extracts. DARU Journal of Pharmaceutical Sciences, vol. 16, no. 2, p. 83-87.

Sultana, S., Ripa, F. A., Hamid, K. 2010. Comparative antioxidant activity study of some commonly used spices in Bangladesh. Pakistan Journal of Biological Sciences, vol. 13, no. 7, p. 340-343. https://doi.org/10.3923/pjbs.2010.340.343 PMid:20836290 DOI: https://doi.org/10.3923/pjbs.2010.340.343

Suslick, K. S. 1990. Sonochemistry. Science, vol. 247, no. 4949, p. 1439-1445. https://doi.org/10.1126/science.247.4949.1439 PMid:17791211 DOI: https://doi.org/10.1126/science.247.4949.1439

Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., Sun, Q. 2010. Diverse set of MicroRNAs are responsive to powdery mildew infection and hest stress in wheat (Triticum aestivum L.). BMC Plant Biology, vol. 10, p. 123. https://doi.org/10.1186/1471-2229-10-123 PMid:20573268 DOI: https://doi.org/10.1186/1471-2229-10-123

Wan, G., Mathur, R., Hu, X., Zhang, X., Lu, X. 2011. MicroRNA response to DNA damage. Trends in Biochemical Sciences, vol. 36, no. 9, p. 478-484. https://doi.org/10.1016/j.tibs.2011.06.002 PMid:21741842 DOI: https://doi.org/10.1016/j.tibs.2011.06.002

Wei, M., Yang, C. Y., Wei, S. H. 2012. Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. Journal of Plant Physiology, vol. 169, no. 8, p. 770-774. https://doi.org/10.1016/j.jplph.2012.01.018 PMid:22437146 DOI: https://doi.org/10.1016/j.jplph.2012.01.018

Willett, W. C. 2002. Balancing life-style and genomics research for disease prevention. Science, vol. 292, no. 5568, p. 695-698. https://doi.org/10.1126/science.1071055 PMid:11976443 DOI: https://doi.org/10.1126/science.1071055

Zhang, X., Wan, G., Berger, F. G., He, X., Lu, X. 2011. The ATM kinase induces microRNA biogenesis in the DNA damage response. Molecular Cell, vol. 41, no. 4, p. 371-383. https://doi.org/10.1016/j.molcel.2011.01.020 PMid:21329876 DOI: https://doi.org/10.1016/j.molcel.2011.01.020

Zhou, X., Wang, G., Zhang, W. 2007. UV-B responsive microRNA genes in Arabidopsis thaliana. Molecular Systems Biology, vol 3, no. 103. https://doi.org/10.1038/msb4100143 DOI: https://doi.org/10.1038/msb4100143

Downloads

Published

2018-02-02

How to Cite

Ražná, K. ., Khasanova, N. ., Ivanišová, E. ., Qahramon, D. ., & Habán, M. . (2018). Antioxidant properties of cumin (Bunium persicum Boiss.) extract and its protective role against abiotic stress tested by microRNA markers. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 11–19. https://doi.org/10.5219/838