MicroRNA (miRNA) in food resources and medicinal plant

Authors

  • Katarí­na Ražná Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Milan Bežo Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Lucia Hlavačková Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Jana Žiarovská Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Marián Miko Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Ján Gažo Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Miroslav Habán Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Sustainable Agriculture and Herbology, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/583

Keywords:

miRNA, human nutrition, functional food, medicinal plant

Abstract

MicroRNAs (miRNAs) are a class of 19 - 24 nucleotide long non-coding RNAs derived from hairpin precursors, regulating various biological, metabolic and developmental processes at the post-transcriptional level. Many of the known miRNAs are evolutionary conserved across diverse plant species and function in the regulatory control of fundamentally important biological processes. It is known that exogenous plant miRNAs specifically target approximately 30% of protein-coding genes in mammals. The research was focused to analyze the occurrence of selected families of miRNAs (miR156, miR168 and miR171) in less used species but nutritionally important plant food resources (flax and medlar) and medicinal plant (milk thistle). The analyses were done by two individual approaches, by (a) miRNA-based molecular markers - as a novel type of functional markers and (b) qualitative Real-Time PCR. The expression pattern of selected miRNAs was analyzed depending on various plant tissues and developmental stages. Results have confirmed the significance and reliability of novel type of markers based on miRNA molecules as well as the species-specific and tissues-specific expression patterns of plants miRNAs. Significant polymorphism profile of miR156b was detected in various flax tissues of genotypes varying in the content of alpha-linolenic acid. Conclusions indicate that the variable behavior of the miRNA molecules, depending on various factors, may reflect the variability of the gene expression regulation of the human genome.  The exploitation of the background of miRNA functioning within different species and plant tissues will help us to understand the molecular machinery as well as the regulatory mechanisms involved in the expression of miRNAs in plants and consequently in human genome.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bari, A., Orazova, S., Ivashchenko, A. 2013. miR156- and miR171- binding sites in the protein-coding sequences of several plant genes. BioMed Research International, vol. 2013, p. 1-7. DOI: https://doi.org/10.1155/2013/307145

Balážová, Ž., Petrovičová, L., Gálová, Z., Vivodík, M. 2016. Molecular characterisation of rye cultivars. Potravinarstvo, vol. 10, no. 1, p. 54-58. https://doi.org/10.5219/522 DOI: https://doi.org/10.5219/522

Bartel, D. P. 2004. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, vol. 116, no. 2, p. 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5 DOI: https://doi.org/10.1016/S0092-8674(04)00045-5

Ali, A. S., Ali, S., Ahmad, A., Bao, B., Philip, P. A., Sarkar, F. H. 2011. Expression of microRNAs: potential molecular link between obesity, diabetes and cancer. Obesity Review, vol. 12, no. 12, p. 1050-1062. https://doi.org/10.1111/j.1467-789X.2011.00906.x PMid:21767342 DOI: https://doi.org/10.1111/j.1467-789X.2011.00906.x

Barvkar, V. T., Pardeshi, V. C., Kale, S. M., Qiu, S., Rollins, M., Datla, R., Kadoo, N. Y. 2013. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes. Planta, vol. 237, no. 4, p. 1149-1161. https://doi.org/10.1007/s00425-012-1833-5 PMid:23291876 DOI: https://doi.org/10.1007/s00425-012-1833-5

Bej, S., Basak, J. 2014. MicroRNAs: The potential Biomarkers in Plant Stress Response. American Journal of Plant Science, vol. 5, no. 5, p. 748-759. https://doi.org/10.4236/ajps.2014.55089 DOI: https://doi.org/10.4236/ajps.2014.55089

Erson-Bensan, A. E. 2014. Introduction to MicroRNAs in Biological Systems. In: Yousef, M. and Allmer, J. ed. (2014) MiRNomics. MicroRNA Biology and Computational Analysis. New York : Springer Science+Business Media, p. 1-14. ISBN 978-1-62703-747-1. DOI: https://doi.org/10.1007/978-1-62703-748-8_1

Fu, D., Ma, B., Mason, A. S., Xiao, M., Wei, L., An, Z. 2013. MicroRNA-based molecular markers: a novel PCR-based genotyping technique in Brassica species. Plant Breeding, vol. 132, no. 4, p. 375-381. https://doi.org/10.1111/pbr.12069 DOI: https://doi.org/10.1111/pbr.12069

Gálová, Z., Vivodík, M., Balážová, Ž., Kuťka-Hlozáková, T. 2015. Identification and differentiation of Ricinus communis L. using SSR markers. Potravinarstvo, vol. 9, no. 1, p. 556-561. https://doi.org/10.5219/516 DOI: https://doi.org/10.5219/516

Ganie, S. A., Mondal, T. K. 2015. Genome-wide development of novel miRNA-based microsatellite markers of rice (Oryza sativa) for genotyping applications. Molecular Breeding, vol. 35, no. 51, p. 1-12. https://doi.org/10.1007/s11032-015-0207-7 DOI: https://doi.org/10.1007/s11032-015-0207-7

Habán, M., Luščáková, D., Kobidová, R., Habánová, M. 2015. Production and quality of milk thistle (Silybum marianum L. Gaertn.) cultivated during the vegetation periods 2012 - 2014 in a warm agri-climatic macroregion. Proceeding: Scientific conferences Banat´s university of agricultural sciences and veterinary medicine. Timişoara: Banat University of Agricultural Sciences and Veterinary Medicine, pp. 18. ISSN 2343-9459.

Hirschi, K. D. 2012. New foods for thought. Trends in Plant Science, vol. 17, no. 3, p. 123-125. https://doi.org/10.1016/j.tplants.2012.01.004 DOI: https://doi.org/10.1016/j.tplants.2012.01.004

Hlavačková, L., Ražná, K., Žiarovská, J., Bežo, M., Bjelková, M. 2015. Application of miRNA-based markers in flax genotypes characterisation. Proceeding: International Cooperation for the Future Agricultural Researches. Debrecen: University of Debrecen, pp. 37-40. ISBN 978-963-473-816-9.

Htwe, N. M. P. S., Luo Z. Q., Jin, L. G., Nadon, B., Wang, K. J., Qiu, L. J. 2015. Functional marker development of miR1511-InDel and allelic diversity within the genus Glycine. MBC Genomics, vol. 16, no. 467. https://doi.org/10.1186/s12864-015-1665-3 DOI: https://doi.org/10.1186/s12864-015-1665-3

Huang, W., Xian, Z., Kang, X., Tang, N., Li, Z. 2015. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biology, vol. 15, no. 209, p. 1-18. https://doi.org/10.1186/s12870-015-0590-6 DOI: https://doi.org/10.1186/s12870-015-0590-6

Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., nquyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., Guegler, K. J. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, vol. 33, no. 20, p. 1-9. https://doi.org/10.1093/nar/gni178 DOI: https://doi.org/10.1093/nar/gni178

Jones-Rhoades, M. W., Bartel, D. P., Bartel, B. 2006. MicroRNAs and Their Regulatory Roles in Plants. Annual Review of Plant Biology, vol. 57, p. 19-53. https://doi.org/10.1146/annurev.arplant.57.032905.105218 PMid:16669754 DOI: https://doi.org/10.1146/annurev.arplant.57.032905.105218

Kulcheski, F. R., Marcelino-Guimaraes, F. C., Nepomuceno, A. L., Abdelnoor, R. V., Margis, R. 2010. The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Analytical Biochemistry, vol. 406, no. 2, p. 185-192. https://doi.org/10.1016/j.ab.2010.07.020 PMid:20670612 DOI: https://doi.org/10.1016/j.ab.2010.07.020

Lukasik, A., Zielenkiewicz, P. 2014. In silico identification of plant miRNAs in mammalian breast milk exosomes - a small step forward? PLOS one, vol. 9, no. 6, e99963. https://doi.org/10.1371/journal.pone.0099963 DOI: https://doi.org/10.1371/journal.pone.0099963

Mondal, T. K., Ganie, S. A. 2014. Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa). Gene, vol. 535, no. 2, p. 204-209. https://doi.org/10.1016/j.gene.2013.11.033 PMid:24315823 DOI: https://doi.org/10.1016/j.gene.2013.11.033

Neutelings, G., Fénart, S., Lucau-Danila, A., Hawkins, S. 2012. Identification and characterization of miRNAs and their potential targets in flax. Journal of Plant Physiology, vol. 169, no. 17, p. 1754-1766. https://doi.org/10.1016/j.jplph.2012.06.011 PMid:22841625 DOI: https://doi.org/10.1016/j.jplph.2012.06.011

Nonogaki, H. 2010. MicroRNA gene regulation cascades during early stages of plant development. Plant and Cell Physiology, vol. 51, no. 11, p. 1840-1846. https://doi.org/10.1093/pcp/pcq154 DOI: https://doi.org/10.1093/pcp/pcq154

Padmalatha, K., Prasad, M. 2006. Optimization of DNA isolation and PCR protocol for RAPD analysis of selected medicinal and aromatic plants of conservation concern from Peninsular India. African Journal of Biotechnology, vol. 5, no. 3, p. 230-234.

Palmer, J. D., Soule, B. P., Simone, B. A., Zaorsky, N. G. 2014. MicroRNA expression altered by diet: Can food be medicinal? Ageing research reviews, vol. 17, p. 16-24. https://doi.org/10.1016/j.arr.2014.04.005 DOI: https://doi.org/10.1016/j.arr.2014.04.005

Ražná, K., Hlavačková, L., Bežo, M., Žiarovská, J., Habán, M., Sluková, Z., Pernišová, M. 2015. Application of the RAPD and miRNA markers in the genotyping of Silybum marianum (L.) Gaertn. Acta phytotechnica et zootechnica, vol. 18, no. 4, p. 83-89. https://doi.org/10.15414/afz.2015.18.04.83-89 DOI: https://doi.org/10.15414/afz.2015.18.04.83-89

Rop, O., Sochor,J., Jurikova, T., Zitka, O., Skutkova, H., Mlcek, J., Salas, P., Krska, B., Babula, P., Adam, V., Kramarova, D., Beklova, M., Provaznik, I., Kizek, R. 2011. Effect of Five Different Stages of Ripening on Chemical Compounds in Medlar (Mespilus germanica L.). Molecules, vol. 16, no. 1, p. 74-91. https://doi.org/10.3390/molecules16010074 DOI: https://doi.org/10.3390/molecules16010074

Roy Choudhury, S., Roy, S., Singh, S. K., Sengupta, D. N. 2010. Molecular characterization and differential expression of ß-1,3-glucanase during ripening in banana fruit in rečsponse to ethylene, auxin, ABA, wounding, cold and light-dark cycles. Plant Cell Reports, vol. 29, no. 28, p. 813-828. https://doi.org/10.1007/s00299-010-0866-0 DOI: https://doi.org/10.1007/s00299-010-0866-0

Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, J. A., Allard, R. W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academic of Sciences, vol. 81, no. 24, p. 8014-8018. https://doi.org/10.1073/pnas.81.24.8014 PMid:6096873 DOI: https://doi.org/10.1073/pnas.81.24.8014

Shi, R., Chiang V. L. 2005. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques, vol. 39, no. 4, p. 519-525. https://doi.org/10.2144/000112010 PMid:16235564 DOI: https://doi.org/10.2144/000112010

Shikata, M., Koyama, T., Mirsuda, N., Ohme-Takagi, M. 2009. Arabidopsis SBP-Box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant and Cell Physiology, vol. 50, no. 12, p. 2133-2145. https://doi.org/10.1093/pcp/pcp148 DOI: https://doi.org/10.1093/pcp/pcp148

Singh, S. K., Bhadra, M. P., Girschick, H. J., Bhadra, U. 2008. MicroRNAs - micro in size but macro in function. FEBS Journal, vol. 275, no. 20, p. 4929-4944. https://doi.org/10.1111/j.1742-4658.2008.06624.x DOI: https://doi.org/10.1111/j.1742-4658.2008.06624.x

Taylor, R. S., Tarver, J. E., Hiscok, S. J., Donoghue, P. C. J. 2014. Evolutionary history of plant microRNAs. Trends in Plant Science, vol. 19, no. 3, 2013, p. 175-182. https://doi.org/10.1016/j.tplants.2013.11.008 PMid:24405820 DOI: https://doi.org/10.1016/j.tplants.2013.11.008

Xie, Z., Khanna, K., Ruan, S. 2010. Expression of microRNAs and its regulation in plants. Seminars in Cell and Developmental Biology, vol. 21, no. 8, p. 790-797. https://doi.org/10.1016/j.semcdb.2010.03.012 PMid:20403450 PMCid:PMC2939293 DOI: https://doi.org/10.1016/j.semcdb.2010.03.012

Yadav, C. B. Y., Muthamilarasan, M., Pandey, G., Prasad, M. 2014. Development of novel microRNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Molecular Breeding, vol. 34, p. 2219-2224. https://doi.org/10.1007/s11032-014-0137-9 DOI: https://doi.org/10.1007/s11032-014-0137-9

Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y. et al. 2012. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research, vol. 22, p. 107-126. https://doi.org/10.1038/cr.2011.158 DOI: https://doi.org/10.1038/cr.2011.158

Zhang, B., Pan, X., Cannon, Ch. H., Cobb, G. P., Anderson, T. A. 2006. Conservation and divergence of plant microRNA genes. The Plant Journal, vol. 46, no. 2, p. 243-259. DOI: https://doi.org/10.1111/j.1365-313X.2006.02697.x

Žiarovská, J., Grygorieva, O., Zeleňáková, L., Bežo, M., Brindza, J. 2015. Identification of sweet chesnut pollen in bee pollen pellet using molecular analyses. Potravinarstvo, vol. 9, no. 1, p. 352-358. https://doi.org/10.5219/497 DOI: https://doi.org/10.5219/497

Downloads

Published

2016-04-27

How to Cite

Ražná, K. ., Bežo, M. ., Hlavačková, L. ., Žiarovská, J. ., Miko, M. ., Gažo, J. ., & Habán, M. . (2016). MicroRNA (miRNA) in food resources and medicinal plant. Potravinarstvo Slovak Journal of Food Sciences, 10(1), 188–194. https://doi.org/10.5219/583

Most read articles by the same author(s)

1 2 > >>