Indicience of bacteria nad antibacterial activity of selected types of tea
DOI:
https://doi.org/10.5219/552Keywords:
bacteria, antibacterial activity, MALDI TOF MS Biotyper, teaAbstract
The purpose of this study was to determine in vitro antibacterial activity of selected teas (Assam: Indian black tea from Camellia sinensis, Pu-erh: darkpu-erh (shu) from Camellia sinensis, Sencha: Japanese green tea from Camellia sinensis) against five species of pathogenic microorganisms. In our study, we determined the total viable count (TVC), yeasts (Y) andEnterobacteriaceae counts (E). MALDI-TOF MS Biotyper was used for identification of colonies after cultivation. Evaluation of the antimicrobial activity was performed by disc diffusion method, well diffusion method and detection of minimum inhibitory concentration (MIC). For antibacterial activity against Escherichia coli CCM 2024, Yersinia enterocolitica CCM 5671, Klebsiella pneumonie CCM 2318, Staphylococus aureus CCM 2461 and Bacillus thurigiensis CCM19 were detected. The inhibition zones were measured in mm in disc diffusion method and well diffusion method. The MIC of the individual extracts was measured spectrophotometrically. The high number of total viable count was found in Pu-erh tea (2.1 log CFU.g-1) and lowest number was found in Assam tea (0.7 log CFU.g-1). The high number of Enterobacteriacea was found in Pu-erh tea (2.03 log CFU.g-1) and lowest in Assam tea (0 log CFU.g-1). The higher number of yeasts was found in Pu-erh tea (1.83 log CFU.g-1) and lowest in Assam tea (0.3 log CFU.g-1). Mass spectrometry revealed the presence of seven Gram positive bacteria Bacillus cereus, B. mycoides, B. pumilus, Enterococcus durans, Staphylococcus epidermis, S. hominis, S. warneri, four Gram negative bacteriaAcinetobacter junii, Hafnia alvei, Klebsiella pneumoniae, Sphingomonas spp. and two yeast - Candida glabrata, Cryptococcus albidus. The results show that certain tea extracts are particularly active against various pathogenic bacteria. Tea extracts (Sencha, Rooibos, Mate, Assam) were found to have the strongest antibacterial activity against Staphylococcus aureus CCM 2461.
Downloads
References
Araghizadeh, A., Kohanteb, J., Fani, M. M. 2013. Inhibitory activity of green tea (Camellia sinensis) extract on some clinically isolated cariogenic and periodontopathic bacteria. Medical principes and practice, vol. 22, p. 368-372. https://doi.org/10.1159/000348299P PMid:23485656
Archana, S., Abraham, J. 2011. Comparative analysis of antimicrobial activity of leaf extracts from fresh green tea, commercial green tea and black tea on pathogens. Journal of Applied Pharmaceutical Science, vol. 1, no. 8, p. 149-152. Available at: http://www.japsonline.com/admin /php/uploads/230_pdf.pdf
Dias, T., Tomás, R. G., Teixeira, N. F., Alves, M. G., Oliveira, P. F., Silva, B.M. 2013. White Tea (Camellia sinensis (L.)): Antioxidant Properties and Beneficial Health Effects. International Journal of Food Science. Nutr. Dietetics, vol. 2, p. 1-15.
Fujita, H., Yamagami, T. 2008a. Efficacy and safety of Chinese black tea (Pu-Ehr) extract in healthy and hypercholesterolemic subjects. Annals of Nutrition and Metabolism, vol. 53, p. 33-42. https://doi.org/ 10.1159/000153006PMid:18769024
Fujita, H., Yamagami, T. 2008b. Extract of black tea (pu-ehr) inhibits postprandial rise in serum cholesterol in mice, and with long term use reduces serum cholesterol and low density lipoprotein levels and renal fat weight in rats. Phytotherapy Research, vol. 22, p. 1275-1281. https://doi.org/10.1002/ptr.2477 PMid:18570239
Ivanišová, E., Frančáková, H., Dráb, Š., Benčová, S. 2015b. Elderberry as important source of antioxidant and biologically active compounds. Proceedings International Scientific and Professional Conference 15th Ružiška Days, Today Science, Tomorrow Industry, Vukovar, Croatia. p. 212-221. ISBN 978-953-7005-36-8.
Ivanišová, E., Frančáková, H., Ritschlová, P., Dráb, Š., Solgajová, M., Tokár, M. 2015a. Biological activity of apple juice enriched by herbal extracts. JMBFS, vol. 4, no. special issue 3, p. 69-73. https://doi.org/ 10.15414/jmbfs.2015.4.special3.69-73
Ivanišová, E., Tokár, M., Mocko, K., Mendelová, A., Bojňanská, T., Mareček, J. 2013. Antioxidant activity of selected plant products. JMBFS, vol. 2, no. Special issue 1, p. 1692-1703. Available at: http://www.jmbfs.org/wp-content/uploads/2013/06/68_jmbs_ivanisova_fbp_f.pdf
Katsuno, T., Kasuga, H., Kusano, Y., Yaguchi, Y., Tomomura, M., Cui, J., Yang, Z., Baldermann, S., Nakamura, Y., Ohnishi, T., Mase, T., Watanabe, N. 2014. Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process. Food Chemistry, vol. 148, p. 388-395. https://doi.org/10.1016/j.foodchem.2013.10.069 PMid:24262573
Kumazawa, K., Masuda, H. 2002. Identification of potent odorants in different green tea varieties using flavor dilution technique. Journal of Agricultural and Food Chemistry, vol. 50, p. 5660-5663. https://doi.org/ 10.1021/jf020498j PMid:12236694
Kumazawa, K., Wada, Y., and Masuda, H. 2006. Characterization of epoxydecenal isomers as potent odorants in black tea (Dimbula) infusion. Journal of Agricultural and Food Chemistry, vol. 54, p. 4795-4801. https://doi.org/10.1021/jf0603127PMid:16787030
Liang, Y., Zhang, L., Lu, J. 2005. A study on chemical estimation of pu-erh tea quality. Journal of the Science of Food and Agriculture, vol. 85, p. 381-390. https://doi.org/10.1002/jsfa.1857
Mabe, K., Yamada, M., Oguni, I., Takahashi, T. 1999. In vitro and in vivo activities of tea catechins against Helicobacter pylori. American Journal of Microbiology, vol. 43, no. 7, p. 1788-1791. PMid:10390246
Mbata, T., Debiao, L., Saikia, A. 2005. Antibacterial activity of the crude extract of Chinese green tea (Camellia Sinensis) on Listeria monocytogenes. The Internet Journal of Microbiology, vol. 2, no. 2, p. 1-4. Available at: http://www.ajol.info/index.php/ajb/article/viewFile/58725/47051
Omogbai, B. A., Ikenebomeh, M. 2013. Microbiological charasteristics and phytochemical screening of some herbal teas in Nigeria. European Scientific Journal, vol. 9, no. 18, p. 1857-7881.
Ošťádalová, M., Tremlová, B., Straka, I., Pokorná, J., Čáslavková, P. 2014. Evaluation of significant pigments in green teas of different origin. Potravinarstvo, vol. 8, no. 1, p. 221-227. https://doi.org/10.5219/344
Palmer, M. E., Haller, C., Mckinney, P. E., Klein-Schwartz. W., Tschirgi, A., Smolinske, S. C., Woolf, A., Sprague, B. M., Bartlett, W. D., Landzberg, B. R. 2003. Adverse events associated with dietary supplements: an observational study. Lancet, vol. 361, p. 101-106. https://doi.org/10.1016/s0140-6736(03)12227-1 PMid:12531576
Dutta, P. P. Baruah, D. C. 2014. Drying modelling and experimentation of Assam black tea (Camellia simensis) with producer gas as a fuel. Applied Thermal Engineering, vol. 63, no. 2, p. 495-502. https://doi.org/10.1016/ j.applthermaleng.2013.11.035
Radji, M., Agustama, R. A., Elya, B., Tjampakasari, C. R. 2013. Antimicrobial activity of green tea extract against isolates of methicillin-resistantStaphylococcus aureusand multi-drug resistantPseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine, vol. 3, no. 8, p. 663-667. https://doi.org/10.1016/s2221-1691(13)60133-1 PMid:23905026
Rashid, M. M. U., Sayeed, M. A., Hassan, M. M., Jainul, M. A., Azam, S., Rahman, M. M. Antidepressant and Antibacterial Activities of Camellia sinensis (White Tea). 2013. e-Journal of Science & Technology (e-JST), vol. 4, no. 8, p. 39-46.
Rizzo, I., Vedoya, G. and Maurutto, S. 2004. Assessment of toxigenic fungi on Argentinean medicinal plants. Microbiology Research, vol. 159, p. 113-120. https://doi.org/10.1016/j.micres.2004.01.013PMid:15293944
Sharangi, A. 2009. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) - A review. Food Research International, vol. 42, no. 5-6, p. 529-535. https://doi.org/10.1016/j.foodres.2009.01.007
Schweiggert, U., Mix, K., Schieber, A. and Carle, R. 2005. An innovative process for the production of spices through immediate thermal treatment of the plant material. Innovative Food Science, vol. 6, p. 143-153. https://doi.org/10.1016/j.ifset.2004.11.006
Silva, B. M. 2012. Tea Consumption and Health. Banerjee, G., Ed.; Nova Science Publishers: New York, EUA, p. 23-38. ISBN: 978-1-61942-721-1.
Flayyih, T., Hanaa, S. Y. and Subhi, I. M. 2013. Antimicrobial Effects of Black Tea (Camellia sinensis) on Pseudomonas Aeruginosa Isolated from Eye Infection May. Iraqi Journal of Science, vol. 54, no. 2, p. 255-265.
Wang, D., Xiao, R., Hu, X., Xu, K., Hou, Y., Zhong, Y., Meng, J., Fan, B., Liu, L. 2010. Comparative safety evaluation of Chinese Pu-erh green tea extract and Pu-erh black tea extract in Wistar rats. Journal of Agricultural and Food Chemistry, vol. 58, p. 1350-1358. https://doi.org/10.1021/jf902171hPMid:20028013
Wang, D., Xu, K., Zhong, Y., Luo, X., Xiao, R., Hou, Y., Bao, W., Yang, W., Yan, H., Yao, P., Liu, L. 2011a. Acute and subchronic oral toxicities of Pu-erh black tea extract in Sprague-Dawley rats. Journal of Ethnopharmacology, vol. 134, no. 1, p. 156-164. https://doi.org/10.1016/j.jep.2010.11.068 PMid:21134434
Wang, D., Zhong, Y., Luo, X., Wu, S., Xiao, R., Bao, W., Wheeler, D.; W, W. 2004. The Medicinal Chemistry of Tea. Drug Development Research, vol. 61, p. 45-65. https://doi.org/10.1002/ddr.10341
Yang, W., Yan, H., Yao, P., Liu, L. G. 2011b. Pu-erh black tea supplementation decreases quinocetone-induced ROS generation and oxidative DNA damage in Balb/c mice. Food and Chemical Toxicology, vol. 49, p. 477-484. https://doi.org/10.1016/j.fct.2010.11.028 PMid:21112366
Yang, Z., Kinoshita, T., Tanida, A., Sayama, H., Morita, A., Watanabe, N. 2009. Analysis of coumarin and its glycosidically bound predcursor in Japanese green tea having sweet-herbaceous odour. Food Chemistry, vol. 114, no. 1, p. 289-294. https://doi.org/10.1016/j.foodchem.2008.09.014
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).