Determination of heavy metals concentration in raw sheep milk from mercury polluted area
DOI:
https://doi.org/10.5219/536Keywords:
former mercury mining area, health hazard, heavy metal, raw sheep milk, SlovakiaAbstract
The paper focuses on determining the content of monitored contaminants (Cd, Cu, Hg, Pb and Zn) in 53 samples of raw sheep milk collected in 2013 and 2014 on the sites Poráč and Matejovce nad Hornádom (middle Spiš). The area is characterized by historical mining and metalworking activity (mining and processing of polymetallic ores rich in Hg, Cd and Pb). Currently, the area is one of the most mercury contaminated areas in Central Europe. All statistical analyses were carried out using the statistical software Statistica 10.0 (Statsoft, USA). Descriptive data analysis included minimum value, maximum value, arithmetic mean and standard deviation. The results of the studied contaminant content show that the limit value for cadmium (10 μg.kg-1) was exceeded in 25 samples. In the case of lead, the limit value of 20 μg.kg-1 was exceeded in 16 cases. The limit value for copper (0.4 mg.kg-1) was exceeded in one case. The limit value for zinc is not defined by a legislative standard. The risk level of the studied contaminants in the samples of raw sheep milk decreases as follows: Cd > Pb > Hg > Cu > Zn. It can be concluded that frequent and long-term consumption of the raw sheep milk originating from the studied sites poses a health risk. The content of the contaminants in the milk and their eventual transition into dairy products should be monitored over a longer term in more detail.
Downloads
References
Angelovičová, L., Fazekašová, D. 2014. Contamination of the soil and water environmentu by heavy metals in the former mining area of Rudňany, Slovakia. Soil Water Research, vol. 9, no. 1, p. 18-24.
Ataro, A., McCrindle, R. I., Botha, B. M., McCrindle, C. M. E., Ndibewu, P. P. 2008. Quantification of trace elements in raw cow´s milk by inductively coupled plasma mass spectrometry (ICP-MS). Food Chemistry, vol. 111, no. 1, p. 243-248. https://doi.org/10.1016/j.foodchem.2008.03.056
Árvay, J., Tomáš, J., Hauptvogl, M., Kopernická, M., Kováčik, A., Bajčan, D., Massányi, P. 2014. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. Journal of Environmental Science and Helath - Part B, vol. 49, no. 11, p. 815-827. https://doi.org/10.1080/03601234.2014.938550
PMid:25190556
Árvay, J., Tomáš, J., Hauptvogl, M., Massányi, P., Harangozo, Ľ., Tóth, T., Stanovič, R., Bryndzová, Š., Bumbalová, M. 2015. Human exposure to heavy metals and possible public health risks via consumption of wild edible mushrooms from Slovak Paradise National Park, Slovakia. Journal of Environmental Science and Helath - Part B, vol. 50, no. 11, p. 838-848. https://doi.org/10.1080/03601234.2015.1058107
Bogdanovičová, K., Skočková, A., Šťástková, Z., Koláčková, I., Karpíšková, R. 2015. The Bacteriological quality of goat and ovine milk. Potravinarstvo, vol. 9, no.1, p. 72-76. https://doi.org/10.5219/438
Caggiano, R., Sabia, S., D´Emilio, M., Macchiato, M., Anastasio, A., Ragosta, M. 2005. Letal levels in fodder, milk, dairy products, and tissue sampled in ovine farms of southern Italy. Environmental Research, vol. 99, no. 1, p. 48-57. https://doi.org/10.1016/j.envres.2004.11.002 PMid:16053927
Cui, Y., Zhu, Y., Zhai, R., Huang, Y., Qja, Y., Liang, J. 2005. Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environment International, vol. 31, no. 6, p. 784-790. https://doi.org/10.1016/j.envint.2005.05.025 PMid:15979144
European Commission - EC, 2006. Commission regulation (EC) No. 1881/2006 of 19. December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L 364.
John, G. F., Andrew, B. A. 2011. Lead isotopic study of the human bioaccesibility of lead in urban soil from Glasgow, Scotland. Sci. Tot. Environ., vol. 409, p. 4958-4965. https://doi.org/10.1016/j.scitotenv.2011.08.061 PMid:21930292
Kazi, T. G., Jalbani, N., Baig, J. A., Kandhro, G. A., Afridi, H. H, Arain, M. B. 2009. Assessment of toxic metals in raw and processed milk samples using electrothermal atomic absorption spectrophotometer. Food and Chemical Toxicology, vol. 47, no. 9, p. 2163-2169. https://doi.org/10.1016/j.fct.2009.05.035 PMid:19500636
Lačanin, I., Dušková, M., Kladnická, I., Karpíšková, R. 2015. Occurrence of enterococcus spp. isolated from the milk and milk products. Potravinarstvo, vol. 9, no. 1, p. 258-262. https://doi.org/10.5219/476
Lai, H. Y., Hseu, Z. Y., Chen, T. C., Chen, B. C., Guo, H. Y., Chen, Z. S. 2010. Health risk-based assessment and management of heavy metals-contaminated soil sites in Taiwan. International Journal of Environmental Research and Public Health, vol. 7, no. 10, p. 3595-3614. https://doi.org/10.3390/ijerph7103596 PMid:21139851
Loutfy, N., Fuerhacker, M., Tundo, P, Raccanelli, S., El Dien, A. G., Ahmed, M. T. 2006. Dietary intake of dioxins and dioxins-like PCBs, due to the consumption of dairy products, fish/seafood and meat from Ismalia city, Egypt. Science of the Total Environment, vol. 370, no. 1, p. 1-8. https://doi.org/10.1016/j.scitotenv.2006.05.012 PMid:16806402
Maas, S., Lucot, E., Gimber, F., Crini, N., Badot, P. M. 2011. Trace metals in raw cow´s milk and assessment of transfer to Comté cheese. Food Chemistry, vol. 129, no. 1, p. 7-12. https://doi.org/10.1016/j.foodchem.2010.09.034
Navarro, M. C., Perey-Sirvent, C., Martinez-Sanchez, M. J., Vidal, J., Tovar, P. J., Bech, J. 2008. Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. Journal of Geochemical Exploration, vol. 96, no. 1-2, p. 183-193. https://doi.org/10.1016/j.gexplo.2007.04.011
PKSR, 2006. Potravinový kódex Slovenskej republiky, výnos č. 18558/2006-SL. Nyjvyššie prípustné množstvá kontaminantov v potravinách platné v Slovenskej republike z 11. septembra 2006. (Food Codex of Slovak republic, decree no. 18558/2006-SL. Maximal alloved levels of contaminants in food in Slovak republic, from 11th of Sepbember 2006), Available at: http://www.svssr.sk/dokumenty/legislativa/18558_2006.pdf.
Rahimi, E. 2013. Lead and cadmium concentrations in goat, cow, sheep, and buffalo milks from different regions of Iran. Food Chemistry, vol. 136, no. 2, p. 389-391. https://doi.org/10.1016/j.foodchem.2012.09.016 PMid:23122075
Rutter, A. P., Schauer, J. J., Lough, G. C., Snyder, D. C., Kolb, C. J., Von Klooster, S. E., Rudolf, T., Manolopoulos, H., Olson, M. L. 2008. A comparison of speciated atmospheric mercury at an urban center and an upwind rural location. Journal of Environmental Monitoring, vol. 10, no. 1, p. 102-108. https://doi.org/10.1039/B710247J PMid:18175023
Singh, A. N., Zeng, D. H., Chen, F. S. 2005. Heavy metal concentrations in redeveloping soil mine spoil under plantationof certain native woody speciesin dry tropical environment, India. Journal of Environmental Science, vol. 17, no. 1, p. 169-174.
Slávik, M., Tóth, T., Árvay, J., Kopernická, M., Harangozo, Ľ., Stanovič, R., Trebichalský, P., Kavalcová, P. 2014. The heavy metals content in vegetables from middle Spiš area. Journal of Microbiology, Biotechnology and Food Science, vol. 2, special no., p. 277-280.
Soylak, M., Saracoglu, S., Tuzen, M., Mendil, D. 2005. Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chemistry, vol. 92, no. 4, p. 649-652. https://doi.org/10.1016/j.foodchem.2004.08.032
Svoboda, L., Havlíčková, B., Kalač, P. 2006. Contents of cadmium, mercury and lead in ideble mushrooms growing in a historical silver-mining area. Food Chemistry, vol. 96, no. 4, p. 580-585. https://doi.org/10.1016/j.foodchem.2005.03.012
Svoboda, L., Zimmermannová, K., Kalač, P. 2000. Concentration of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter. Science of the Total Environment, vol. 246, no. 1, p. 61-67. https://doi.org/10.1016/S0048-9697(99)00411-8
Tubaro, A., Hungerford, J 2007. Environmental Toxicology. In: Gupta, RC. (Ed.), Veterinary Toxicology: Basic and clinical principles. Academic, New York, NY, USA, p. 663-725.
Tuzen, M., Saracoglu, S., Soylak, M. 2008. Evaluation of trace element contents of powdered beverages from Turkey. Journal of Food Nutrition Research, vol. 47, no. 3, p. 120-124.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).