А Formation of the biological value of beef protein depending on the age and breed of bulls
DOI:
https://doi.org/10.5219/2003Keywords:
amino acid score, age, breed, beefAbstract
The article substantiates the expediency of assessing the content of essential amino acids in the samples obtained during the controlled slaughter of bulls for the protein of chicken eggs as an effective means of improving the quality of the management processes for producing biologically complete products. To ascertain the biological value of beef, samples of the longest back muscle were obtained from bulls of six domestic dairy breeds (Black-and-White, Red Steppe, and Angler dairy breeds and Simmental, Lebedyn, and Gray Ukrainian dairy breeds of combined productivity) at the ages of 3, 6, 9, 12, 15, 18, and 21 months. The experiments were conducted using the ion-exchange liquid column chromatography method on an automatic amino acid analyser (T-339 M) manufactured by Microtechna (Czech Republic). It has been demonstrated that the biological value of meat from bulls of the studied breeds is limited during ontogeny, primarily due to age-related factors. As bulls grow older and gain weight, their meat proteins exhibit increased biological value, approaching the reference index of chicken egg proteins. The first peak in the average values of the amino acid index in beef of bulls of 12 months of age (0.89%) was followed by a consistent decrease to 15 months (0.68%) and a repeated increase in values in animals of 21 months of age (0.83%). This is mainly due to the rise in the scores for methionine by 0.16%, isoleucine by 0.16%, histidine by 0.42%, arginine by 0.18%, and threonine by 0.20%. The increase in the biological value of the remaining amino acid scores in the age trend of changes did not exceed 0.15%. The identified patterns indicate the presence of additional reserves in the near-term scenario, which can be utilised to ensure the production of high-grade beef while optimising the age parameters of slaughtering bulls of different productivity directions.
Downloads
Metrics
References
Paliy, A., Nanka, A., Marchenko, M., Bredykhin, V., Paliy, A., Negreba, J., Lazorenko, L., Panasenko, A., Rybachuk, Z., & Musiienko, O. (2020). Establishing changes in the technical parameters of nipple rubber for milking machines and their impact on operational characteristics. In Eastern-European Journal of Enterprise Technologies (Vol. 2, Issue 1 (104), pp. 78–87). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2020.200635 DOI: https://doi.org/10.15587/1729-4061.2020.200635
Korkh, I. V., Boiko, N. V., Pomitun, І. A., Paliy, A. P., Pavlichenko, O. V., Negreba, Y. V., Rysovanyi, V. I., & Siabro, A. S. (2023). The impact of environmental temperature on ewe reproduction, adaptive responses during insemination, and productive characteristics of the lambs obtained from them. In Regulatory Mechanisms in Biosystems (Vol. 14, Issue 3, pp. 358–364). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/10.15421/022353 DOI: https://doi.org/10.15421/10.15421/022353
Rodionova, K., Кhimych, M., & Paliy, A. (2021). Veterinary and sanitary assessment and disinfection of refrigerator chambers of meat processing enterprises. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 616–626). HACCP Consulting. https://doi.org/10.5219/1628 DOI: https://doi.org/10.5219/1628
Paredi, G., Sentandreu, M.-A., Mozzarelli, A., Fadda, S., Hollung, K., & de Almeida, A. M. (2013). Muscle and meat: New horizons and applications for proteomics on a farm to fork perspective. In Journal of Proteomics (Vol. 88, pp. 58–82). Elsevier BV. https://doi.org/10.1016/j.jprot.2013.01.029 DOI: https://doi.org/10.1016/j.jprot.2013.01.029
Zhang, W., Xiao, S., Samaraweera, H., Lee, E. J., & Ahn, D. U. (2010). Improving functional value of meat products. In Meat Science (Vol. 86, Issue 1, pp. 15–31). Elsevier BV. https://doi.org/10.1016/j.meatsci.2010.04.018 DOI: https://doi.org/10.1016/j.meatsci.2010.04.018
Wyness, L. (n.d.). Nutritional aspects of red meat in the diet. In J. Wood (Ed.), Nutrition and Climate Change: Major issues confronting the meat industry (pp. 1–22). Nottingham University Press. https://doi.org/10.7313/upo9781908062413.002 DOI: https://doi.org/10.7313/UPO9781908062413.002
Cobos, Á., & Díaz, O. (2015). Chemical Composition of Meat and Meat Products. In Handbook of Food Chemistry (pp. 471–510). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36605-5_6 DOI: https://doi.org/10.1007/978-3-642-36605-5_6
Sá, A. G. A., Moreno, Y. M. F., & Carciofi, B. A. M. (2019). Food processing for the improvement of plant proteins digestibility. In Critical Reviews in Food Science and Nutrition (Vol. 60, Issue 20, pp. 3367–3386). Informa UK Limited. https://doi.org/10.1080/10408398.2019.1688249 DOI: https://doi.org/10.1080/10408398.2019.1688249
Simon Sarkadi, L. (2019). Amino acids and biogenic amines as food quality factors. In Pure and Applied Chemistry (Vol. 91, Issue 2, pp. 289–300). Walter de Gruyter GmbH. https://doi.org/10.1515/pac-2018-0709 DOI: https://doi.org/10.1515/pac-2018-0709
Scollan, N. D., Costa, P., Hallett, K. G., Nute, G. R., Wood, J. D., & Richardson, R. I. (2017). The fatty acid composition of muscle fat and relationships to meat quality in Charolais steers: influence of level of red clover in the diet. In Proceedings of the British Society of Animal Science (Vol. 2006, pp. 23). Elsevier BV. https://doi.org/10.1017/S1752756200017002
Yaremchuk, O. S., Razanova, O. P., Skoromna, O. I., Chudak, R. A., Holubenko, T. L., & Kravchenko, O. O. (2022). Post-slaughter indicators of meat productivity and chemical composition of the muscular tissues of bulls receiving corrective diet with protein-vitamin premix. In Regulatory Mechanisms in Biosystems (Vol. 13, Issue 3, pp. 219–224). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/022228 DOI: https://doi.org/10.15421/022228
Farionik, T. V., Yaremchuk, O. S., Razanova, O. P., Ohorodnichuk, G. M., Holubenko, T. L., & Glavatchuk, V. А. (2023). Effects of mineral supplementation on qualitative beef parameters. In Regulatory Mechanisms in Biosystems (Vol. 14, Issue 1, pp. 64–69). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/022310 DOI: https://doi.org/10.15421/022310
Kim, Y. H. B., Kemp, R., & Samuelsson, L. M. (2016). Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. In Meat Science (Vol. 111, pp. 168–176). Elsevier BV. https://doi.org/10.1016/j.meatsci.2015.09.008 DOI: https://doi.org/10.1016/j.meatsci.2015.09.008
Kodani, Y., Miyakawa, T., Komatsu, T., & Tanokura, M. (2017). NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle. In Scientific Reports (Vol. 7, Issue 1, pp. 1297–1310). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-017-01272-8 DOI: https://doi.org/10.1038/s41598-017-01272-8
Bischof, G., Witte, F., Terjung, N., Januschewski, E., Heinz, V., Juadjur, A., & Gibis, M. (2022). Effect of sampling position in fresh, dry-aged and wet-aged beef from M. Longissimus dorsi of Simmental cattle analyzed by 1H NMR spectroscopy. In Food Research International (Vol. 156, Issue 4, p. 111334). Elsevier BV. https://doi.org/10.1016/j.foodres.2022.111334 DOI: https://doi.org/10.1016/j.foodres.2022.111334
Razanova, О. P., Holubenko, T. L., Bernyk, I. M., Novgorodska, N. M., & Solomon, A. M. (2023). Biological value of veal obtained from bulls of different breed origin and grown using dairy and meat breeding technology. In Bulletin of Sumy National Agrarian University. The Series: Livestock, (Vol. 3, pp. 55–62). Publishing House Helvetica (Publications). https://doi.org/10.32782/bsnau.lvst.2023.3.8 DOI: https://doi.org/10.32782/bsnau.lvst.2023.3.8
Hollo, G., Nuernberg, K., Hollo, I., Csapo, J. Seregi, J., Repa, I., & Ender, K. (2007). Effect of feeding on the composition of longissmus muscle of Hungarian Grey and Holstein Friesian bulls. III. Amino acid composition and mineral content. In Archiv fur Tierzucht (Vol. 50, Isssue 6, pp. 575–586). Copernicus GmbH. https://doi.org/10.5194/aab-50-575-2007 DOI: https://doi.org/10.5194/aab-50-575-2007
Šubrt, J., Kráčmar, S., & Diviš, V. (2002). The profile of amino acids in intramuscular protein of bulls of milked and beef commercial types. In Czech Journal of Animal Science (Vol. 47, Issue 1, pp. 21–29). Czech Academy of Agricultural Sciences.
Picard, B., Jurie, C., Bauchart, D., Dransfield, E., Ouali, A., Martin, J. F., Jailler, R., Lepetit, J., & Culioli, J. (2007). Muscle and meat characteristics from the main beef breeds of the Massif Central. In Sciences Des Aliments (Vol. 27, Issue 2, pp. 168–180). Lavoisier. https://doi.org/10.3166/sda.27.168-180 DOI: https://doi.org/10.3166/sda.27.168-180
Lidder, P., & Sonnino, A. (2012). Biotechnologies for the management of genetic resources for food and agriculture. In Advances in Genetics (Vol. 78, pp. 1–167). Elsevier BV. https://doi.org/10.1016/B978-0-12-394394-1.00001-8 DOI: https://doi.org/10.1016/B978-0-12-394394-1.00001-8
Li, L. Q., Tian, W. Q., & Zan, K. S. (2011). Effects of age on quality of beef from Qinchuan Cattle Carcass. In Agricultural Sciences in China (Vol. 10, Issue 11, pp. 1765–1771). Elsevier BV. https://doi.org/10.1016/S1671-2927(11)60176-4 DOI: https://doi.org/10.1016/S1671-2927(11)60176-4
Marinangeli, C. P., & House, J. D. (2017). Potential impact of the digestible indispensable amino acid score as a measure of protein quality on dietary regulations and health. In Nutrition Reviews (Vol. 75, Issue 8, pp. 658–667). Oxford University Press (OUP). https://doi.org/10.1093/nutrit/nux025 DOI: https://doi.org/10.1093/nutrit/nux025
Nalyvayko, L., Rodionova, K., Pankova, S., Shomina, N., Katerynych, O., & Khimych, M. (2021). Comparative characteristics of eggs of chickens of domestic and foreign selection in their diverse age. Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pр. 245–253). HACCP Consulting. https://doi.org/10.5219/1501 DOI: https://doi.org/10.5219/1501
Caire-Juvera, G., Vázquez-Ortiz, F. A., & Grijalva-Haro, M. I. (2013). Amino acid composition, score and in vitro protein digestibility of foods commonly consumed in norhwest Mexico. In Nutricion Hospitalaria (Vol. 28, Issue 2, pp. 365–371). Arán Ediciones, S. L. https://doi.org/10.3305/nh.2013.28.2.6219
DSTU 4673:2006. Cattle for slaughter. General specifications. Quality management systems – Requirements.
Csapó, J., Albert, Cs., Lóki, K., & Csapó-Kiss, Zs. (2008). Separation and determination of the amino acids by ion exchange column chromatography applying post-column derivatization. In Acta Universitasis Sapientae (Vol. 1, pp. 5–29). Sapientia Hungarian University of Transylvania.
Karlsson, E., & Hirsh, I. (2011). Ion exchange chromatography. In Methods Biochem Anal (Vol. 54, pp. 93–133). Wiley. https://doi.org/10.1002/9780470939932.ch4 DOI: https://doi.org/10.1002/9780470939932.ch4
Cummins, P. M., Rochfort, K. D., & O’Connor, B. F. (2016). Ion-Exchange Chromatography: Basic Principles and Application. In Methods in Molecular Biology (pp. 209–223). Springer New York. https://doi.org/10.1007/978-1-4939-6412-3_11 DOI: https://doi.org/10.1007/978-1-4939-6412-3_11
Holubenko, T. L. (2018). Nutritional value of veal used in baby food production. In Ukrainian Journal of Ecology (Vol. 8, Issue 1, pp. 637–643). Alex Matsyura Publishing. DOI: https://doi.org/10.15421/2018_260
Bal-Prylypko, L., Yancheva, M., Paska, M., Ryabovol, M., Nikolaenko, M., Israelian, V., Pylypchuk, O., Tverezovska, N., Kushnir, Y., & Nazarenko, M. (2022). The study of the intensification of technological parameters of the sausage production process. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 27–41). HACCP Consulting. https://doi.org/10.5219/1712 DOI: https://doi.org/10.5219/1712
Sengor, G. F., Gun, H., & Kalatoglu, H. (2008). Determination of the amino acid and chemical composition of canned smoked mussels (Mytilus galloprovincialis, L.). In Turkish Journal of Veterinary & Animal Sciences (Vol. 32, Issue 1, pp. 1–5). TUBITAK.
Genchev, A., Mihaylova, G., Ribarski, S., Pavlov, A., & Kabakchiev, M. (2008). Meat quality and composition in japanese quails. In Trakia Journal of Sciences (Vol. 6, Issue 4, pp. 72–82). Trakia University Press.
Christensen, M., Ertbjerg, P., Failla, S., Sañudo, C., Richardson, R. I., Nute, G. R., Olleta, Panea, J. L. B., Albertí, P., Juárez, M., Hocquette, J. F., & Williams, J. L. (2011). Relationship between collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds. In Meat Science (Vol. 87, Issue 1, pp. 61–65). Elsevier BV. https://doi.org/10.1016/j.meatsci.2010.09.003 DOI: https://doi.org/10.1016/j.meatsci.2010.09.003
Watanabe, A., Ueda, Y., & Higuchi, M. (2004). Effects of slaughter age on the levels of free amino acids and dipeptides in fattening cattle. In Animal Science Journal (Vol. 75, Issue 4, pp. 361–367). Wiley. https://doi.org/10.1111/j.1740-0929.2004.00198.x DOI: https://doi.org/10.1111/j.1740-0929.2004.00198.x
Cuvelier, C., Clinquart, A., Hocquette, J. F., Cabaraux, J. F., Dufrasne, I., Istasse, L., & Hornick, J. L. (2006). Comparison of composition and quality traits of meat from young finishing bulls from Belgian Blue, Limousin and Aberdeen Angus breeds. In Meat Science (Vol. 74, Issue 3, pp. 522–531). Elsevier BV. https://doi.org/10.1016/j.meatsci.2006.04.032 DOI: https://doi.org/10.1016/j.meatsci.2006.04.032
Besung, I. N. K., Rasdianah, I., Suardana, W., & Suwiti, N. K. (2019). Amino acids on Bali cattle and Wagyu beef based on different function of muscle. In Jurnal Veteriner (Vol. 20, Issue 2, pp. 228–233). Universitas Udayana.
Inoue, K., Kobayashi, M., Shoji, N., & Kato, K. (2011). Genetic param-eters for fatty acid composition and feed efficiency traits in Japanese Black cattle. In Animal (Vol. 5, Issue. 7, pp. 987–999). Elsevier BV. https://doi.org/10.1017/S1751731111000012 DOI: https://doi.org/10.1017/S1751731111000012
Nogi, T., Honda, T., Mukai, F., Okagaki, T., & Oyama, K. (2011). Heritabilities and genetic correlations of fatty acid compositions inlongissimus muscle lipid with carcass traits in Japanese Black cattle. In Journal of Animal Science (Vol. 89, Issue 3, pp. 615–621). Oxford University Press (OUP). https://doi.org/10.2527/jas.2009-2300 DOI: https://doi.org/10.2527/jas.2009-2300
Hollo, G., Csapo, J., Szues, E., Tozser, J., Repa, I., & Hollo, I. (2001). Influence of breed, slaughter weight and gender on chemical composition of beef. Part 1. Aminoacid profile and biological value of proteins. In Asian-Australasian Journal of Animal Sciences (Vol. 14, Issue 11, pp. 1555–1559). Asian Australasian Association of Animal Production Societies. https://doi.org/10.5713/ajas.2001.1555 DOI: https://doi.org/10.5713/ajas.2001.1555
Lee, S. H., Kim, C. N., Ko, K. B., Park, S. P., Kim, H. K., Kim, J. M., & Ryu, Y. C. (2019). Comparisons of beef fatty acid and amino acid characteristics between Jeju Black cattle, Hanwoo, and Wagyu breeds. In Food Science of Animal Resources (Vol. 39, Issue 3, pp. 402–409). Korean Society for Food Science of Animal Resources. https://doi.org/10.5851/kosfa.2019.e33 DOI: https://doi.org/10.5851/kosfa.2019.e33
Jayasena, D. D., Ahn, D. U., Nam, K. C., & Jo, C. (2013). Factors affecting cooked chicken meat flavour: A review. In World’s Poultry Science Journal (Vol. 69, Issue 3, pp. 515–526). Informa UK Limited. https://doi.org/10.1017/S0043933913000548 DOI: https://doi.org/10.1017/S0043933913000548
Koutsidis, G., Elmore, J. S., Oruna-Concha, M. J., Campo, M. M., Wood, J. D., & Mottram, D. S. (2008). Water-soluble precursors of beef flavour: I. Effect of diet and breed. In Meat Science (Vol. 79, Issue 1, pp. 124–130). Elsevier BV. https://doi.org/10.1016/j.meatsci.2007.08.008 DOI: https://doi.org/10.1016/j.meatsci.2007.08.008
Cho, S., Seol, K., Kang, S., Kim, Y., Seo, H., Lee, W., Kim, J., & Van Ba, H. (2020). Comparison of tastes-related components and eating quality between hanwoo steer and cow longissimus thoracis muscles. In Food Science of Animal Resource (Vol. 40, Issue 6, pp. 908–923). Korean Society for Food Science of Animal Resources. https://doi.org/10.5851/kosfa.2020.e58 DOI: https://doi.org/10.5851/kosfa.2020.e58
Jeong, D., Oh, M. R., Seong, P. N., Cho, S., Kang, G. H., Kim, J. H., Jeong, S. G., Lee, J. S, & Park, B. Y. (2012). Comparison of meat quality traits, free amino acid and fatty acid on longissimus lumborum muscles from Hanwoo, Holstein and Angus steers, fattened in Korea. In Korean Journal for Food Science of Animal Resources (Vol. 32, Issue 5, pp. 591–597). Korean Society for Food Science of Animal Resources. https://doi.org/10.5851/kosfa.2012.32.5.591 DOI: https://doi.org/10.5851/kosfa.2012.32.5.591
Cho, S. H., Kim, J. H., Seong, P. N., Choi, Y. H., Park, B. Y., Lee, Y. J., In, T. S., Chun, S. Y., & Kim, Y. K. (2007). Cholesterol, free amino acid, nucleotide-related compounds, and fatty acid composition of Korean Hanwoo bull beef. In Korean Journal for Food Science of Animal Resources (Vol. 27, Issue 4, pp. 440–449). Korean Society for Food Science of Animal Resources. https://doi.org/10.5851/kosfa.2007.27.4.440 DOI: https://doi.org/10.5851/kosfa.2007.27.4.440
Vopálenský, J., Straková, E., Suchý, P., & Šimek, F. (2017). Amino acid levels in muscle tissue of eight meat cattle breeds. In Czech Journal of Animal Science (Vol. 62, Issue 8, pp. 339–346). Czech Academy of Agricultural Sciences. https://doi.org/10.17221/96/2016-CJAS DOI: https://doi.org/10.17221/96/2016-CJAS
Zainal Samicho, Z., Siti Roha Ab Mutalib, S. R., & Abdullah, N. (2013). Amino acid composition of droughtmaster beef at various beef cuts. In Agricultural Sciences (Vol. 4, Issue 5B, pp. 61–64). Scientific Research Publishing, Inc. https://doi.org/10.4236/as.2013.45B012 DOI: https://doi.org/10.4236/as.2013.45B012
Masebo, N. T., Marliani, G., Cavallini, D., Accorsi, P. A., Di Pietro, M., Beltrame, A., Gentile, A., & Jacinto, J. G. P. (2023). Health and welfare assessment of beef cattle during the adaptation period in a specialized commercial fattening unit. In Research in Veterinary Science (Vol. 158, pp. 50–55). Elsevier BV. https://doi.org/10.1016/j.rvsc.2023.03.008 DOI: https://doi.org/10.1016/j.rvsc.2023.03.008
Orobchenko, O., Kurbatska, O., Paliy, A., & Palii, A. (2023). Toxicological evaluation of feed contaminated with mycotoxins using a luminescent microorganism: Photobacterium phosphoreum. In Veterinarska Stanica (Vol. 54, Issue 2, pp. 147–163). Croatian Veterinary Institute, Zagreb. https://doi.org/10.46419/vs.54.2.7 DOI: https://doi.org/10.46419/vs.54.2.7
Nanka, O., Shigimaga, V., Paliy, A., Sementsov, V., & Paliy, A. (2018). Development of the system to control milk acidity in the milk pipeline of a milking robot. In Eastern-European Journal of Enterprise Technologies (Vol. 3/9 (93), pp. 27–33). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2018.133159 DOI: https://doi.org/10.15587/1729-4061.2018.133159
Cooke, A. S., Mullan, S., Morten, C., Hockenhull, J., Le Grice, P., Le Cocq, K., Lee, M. R. F., Cardenas, L. M., & Rivero, M. J. (2023). Comparison of the welfare of beef cattle in housed and grazing systems: hormones, health, and behaviour. In Journal of Agricultural Science (Vol. 161, Issue 3, pp. 450–463). Cambridge University Press (CUP).
https://doi.org/10.1017/S0021859623000357 DOI: https://doi.org/10.1017/S0021859623000357
Zavgorodnii, A. I., Pozmogova, S. A., Kalashnyk, M. V., Paliy, A. P., Plyuta, L. V., & Palii, A. P. (2021). Etiological factors in triggering non-specific allergic reactions to tuberculin in cattle. In Regulatory Mechanisms in Biosystems (Vol. 12, Issue 2, pp. 228–233). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/022131 DOI: https://doi.org/10.15421/022131
Nalon, E., Contiero, B., Gottardo, F., & Cozzi, G. (2021). The Welfare of Beef Cattle in the Scientific Literature From 1990 to 2019: A Text Mining Approach. In Frontiers in Veterinary Science (Vol. 7). Frontiers Media SA. https://doi.org/10.3389/fvets.2020.588749 DOI: https://doi.org/10.3389/fvets.2020.588749
Simmonds, R. C. (2017). Bioethics and Animal Use in Programs of Research, Teaching, and Testing. In Management of Animal Care and Use Programs in Research, Education, and Testing (pp. 35–62). CRC Press. https://doi.org/10.1201/9781315152189-4 DOI: https://doi.org/10.1201/9781315152189-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.