Determination of the fatty and amino acid composition of camel milk, milk powder and shubat

Camel milk


  • Aikerim Zhumabay Almaty Technological University, Almaty 050000, Kazakhstan, Tel.: +7-778-312-5278
  • Assiya Serikbayeva Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan, Tel.: +7-777-256-5375
  • Sabira Kozykan Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan, Tel.: +7-747-389-7338
  • Yus Aniza Yusof Universiti Putra, Faculty of Engineering, Department of Process and Food Engineering, Malaysia 43400, UPM Serdang
  • Aigul Kozhakhmetova S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan, Tel.: +7-777-234-6778



camel milk, milk powder, shubat, fatty acids, amino acids


Camel milk is considered an essential source of nutrition and an effective remedy with healing properties in treating several diseases.  Shubat, a fermented drink made from camel milk, contains easily digestible proteins, determining its nutritional value. Meanwhile, few studies have analysed the fatty and amino acid composition of Bactrian camel milk, milk powder and shubat in Kazakhstan. In this paper, we used the gas chromatography-mass spectrometry method to determine milk the fatty and amino acid composition of Kazakhstan camel milk and camel milk powder and submit samples. As a result, significant differences in the fatty acid and amino acid compositions were observed among samples of raw milk, milk powder and shubat. differences were found in all amino acids. The most representative fatty acids in the three groups were С16:0, С18:0, С18:1n9c, С14:0 FAs. In camel milk samples, among indispensable amino acids, lysine (29.64%) was the highest in concentration, followed by methionine (25.68%). Some polyunsaturated fatty acids (PUFAs) such as С18:3n3c, С20:4n6, С18:3n3c, С20:3n3c 8,11,14 were found only in shubat samples. Furthermore, we revealed a significant decrease in both dispensable (DAA) and indispensable (IDAA) contents in camel milk powder. Meanwhile, an increase in the quantitative content of amino acids has been observed in shubat, especially in threonine (166.86%), aspargine (156.34%), alanine (114.48%), etc. The results provide a theoretical basis for additional studies of camel milk composition of Bactrian camel in Kazakhstan.


Download data is not yet available.


Metrics Loading ...


Amandykova, M., Dossybayev, K., Mussayeva, A., Saitou, N., Zhunusbayeva, Z., & Bekmanov, B. (2023). A Study of the Genetic Structure of Hybrid Camels in Kazakhstan. In Genes (Vol. 14, Issue 7, p. 1373). MDPI AG.

Zhumabai, A. N., & Serikbayeva, A. D. (2022). Nutritional and therapeutic value of camel milk. In Science and education in the modern world: Challenges of the XXI century (p. 61). Astana.

Amandykova, M., Dossybayev, K., Mussayeva, A., Saitou, N., Zhunusbayeva, Z., & Bekmanov, B. (2023). A Study of the Genetic Structure of Hybrid Camels in Kazakhstan. In Genes (Vol. 14, Issue 7, p. 1373). MDPI AG. DOI:

Zibaee, S., Hosseini, S. M. Al-Reza, Yousefi, M., Taghipour, A., Kiani, M. A., & Noras, M. R. (2015). Nutritional and Therapeutic Characteristics of Camel Milk in Children: A Systematic Review. In Electronic physician (Vol. 7, Issue 7, pp. 1523–1528). Knowledge Kingdom Publishing. DOI:

Swelum, A. A., El-Saadony, M. T., Abdo, M., Ombarak, R. A., Hussein, E. O. S., Suliman, G., Alhimaidi, A. R., Ammari, A. A., Ba-Awadh, H., Taha, A. E., El-Tarabily, K. A., & Abd El-Hack, M. E. (2021). Nutritional, antimicrobial and medicinal properties of Camel’s milk: A review. In Saudi Journal of Biological Sciences (Vol. 28, Issue 5, pp. 3126–3136). Elsevier BV. DOI:

Gorban, A., & Izzeldin, O. (2001). Fatty acids and lipids of camel milk and colostrum. In International Journal of Food Sciences and Nutrition (Vol. 52, Issue 3, pp. 283–287). Informa UK Limited. DOI:

Miao, J., Xiao, S., & Wang, J. (2023). Comparative Study of Camel Milk from Different Areas of Xinjiang Province in China. In Food Science of Animal Resources (Vol. 43, Issue 4, pp. 674–684). Korean Society for Food Science of Animal Resources. DOI:

Konuspayeva, G., Faye, B., Pauw, E. D., & Focant, J.-F. (2011). Levels and trends of PCDD/Fs and PCBs in camel milk (Camelus bactrianus and Camelus dromedarius) from Kazakhstan. In Chemosphere (Vol. 85, Issue 3, pp. 351–360). Elsevier BV. DOI:

Manaer, T., Yu, L., Zhang, Y., Xiao, X.-J., & Nabi, X.-H. (2015). Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin. In Journal of Ethnopharmacology (Vol. 169, pp. 269–274). Elsevier BV. DOI:

Asembaeva, E. K., Galstyan, A. G., Khurshudyan, S. A., Nurmukhanbetova, D. E., Velyamov, M. T., Alenova, A. B., & Seydakhmetova, Z. Z. (2017). Development of technology and study of the immunobiological properties of a sour milk beverage based on camel milk. In Voprosy pitaniia (Vol. 86, Issue 6, pp. 67–73).

Meydani, M. (2001). Nutrition Interventions in Aging and Age‐Associated Disease. In Annals of the New York Academy of Sciences (Vol. 928, Issue 1, pp. 226–235). Wiley. DOI:

Konuspayeva, G., & Faye, B. (2021). Recent Advances in Camel Milk Processing. In Animals (Vol. 11, Issue 4, p. 1045). MDPI AG. DOI:

Aralbayev, N., Dikhanbayeva, F., Serikbayeva, A., Yusof, Y. A., & Abdul Manaf, Y. N. (2019) Comparative study of amino acid composition of raw and dry camel milk and shubat (Camelus dromedaries). In EurAsian Journal of BioSciences (Vol. 13, pp. 1489 – 1493). Foundation for Enviromental Protection and Research.

Ho, T. M., Zou, Z., & Bansal, N. (2022). Camel milk: A review of its nutritional value, heat stability, and potential food products. In Food Research International (Vol. 153, p. 110870). Elsevier BV. DOI:

Benmeziane – Derradji, F. (2021). Evaluation of camel milk: gross composition—a scientific overview. In Tropical Animal Health and Production (Vol. 53, Issue 2). Springer Science and Business Media LLC. DOI:

Elagizi, A., Lavie, C. J., O’Keefe, E., Marshall, K., O’Keefe, J. H., & Milani, R. V. (2021). An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. In Nutrients (Vol. 13, Issue 1, p. 204). MDPI AG. DOI:

Kapoor, B., Kapoor, D., Gautam, S., Singh, R., & Bhardwaj, S. (2021). Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. In Current Nutrition Reports (Vol. 10, Issue 3, pp. 232–242). Springer Science and Business Media LLC. DOI:

He, J., Xiao, Y., Orgoldol, K., Ming, L., Yi, L., & Ji, R. (2019). Effects of Geographic Region on the Composition of Bactrian Camel Milk in Mongolia. In Animals (Vol. 9, Issue 11, p. 890). MDPI AG. DOI:

Karaman, A. D., Yildiz Akgül, F., Öğüt, S., Seçilmiş Canbay, H., & Alvarez, V. (2022). Gross composition of raw camel’s milk produced in Turkey. In Food Science and Technology (Vol. 42). FapUNIFESP (SciELO). DOI:

Chamekh, L., Calvo, M., Khorchani, T., Castro-Gómez, P., Hammadi, M., Fontecha, J., & Yahyaoui, M. H. (2020). Impact of management system and lactation stage on fatty acid composition of camel milk. In Journal of Food Composition and Analysis (Vol. 87, p. 103418). Elsevier BV. DOI:

Shingfield, K. J., Bernard, L., Leroux, C., & Chilliard, Y. (2010). Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. In Animal (Vol. 4, Issue 7, pp. 1140–1166). Elsevier BV. DOI:

Arnould, V. M.-R., & Soyeurt, H. (2009). Genetic variability of milk fatty acids. In Journal of Applied Genetics (Vol. 50, Issue 1, pp. 29–39). Springer Science and Business Media LLC. DOI:

Balakrishnan, G., & Agrawal, R. (2012). Antioxidant activity and fatty acid profile of fermented milk prepared by Pediococcus pentosaceus. In Journal of Food Science and Technology (Vol. 51, Issue 12, pp. 4138–4142). Springer Science and Business Media LLC. DOI:

White, B. (2009). Dietary fatty acids. In American Family Physician (Vol. 80, pp. 345–350). American Academy of General Practice.

Wiktorowska-Owczarek, A., Berezińska, M., & Nowak, J. (2015). PUFAs: Structures, Metabolism and Functions. In Advances in Clinical and Experimental Medicine (Vol. 24, Issue 6, pp. 931–941). Wroclaw Medical University. DOI:

Joris, P. J., & Mensink, R. P. (2016). Role of cis-Monounsaturated Fatty Acids in the Prevention of Coronary Heart Disease. In Current Atherosclerosis Reports (Vol. 18, Issue 7). Springer Science and Business Media LLC. DOI:

Chen, J., Li, Q., Zhang, Y., Yang, P., Zong, Y., Qu, S., & Liu, Z. (2010). Oleic acid decreases the expression of a cholesterol transport-related protein (NPC1L1) by the induction of endoplasmic reticulum stress in CaCo-2 cells. In Journal of Physiology and Biochemistry (Vol. 67, Issue 2, pp. 153–163). Springer Science and Business Media LLC. DOI:

Shahidi, F., & Ambigaipalan, P. (2018). Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. In Annual Review of Food Science and Technology (Vol. 9, Issue 1, pp. 345–381). Annual Reviews. DOI:

Das, U. N. (2021). “Cell Membrane Theory of Senescence” and the Role of Bioactive Lipids in Aging, and Aging Associated Diseases and Their Therapeutic Implications. In Biomolecules (Vol. 11, Issue 2, p. 241). MDPI AG. DOI:

Marangoni, F., Agostoni, C., Borghi, C., Catapano, A. L., Cena, H., Ghiselli, A., La Vecchia, C., Lercker, G., Manzato, E., Pirillo, A., Riccardi, G., Risé, P., Visioli, F., & Poli, A. (2020). Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. In Atherosclerosis (Vol. 292, pp. 90–98). Elsevier BV. DOI:

Carlson, S. E., & Colombo, J. (2016). Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. In Advances in Pediatrics (Vol. 63, Issue 1, pp. 453–471). Elsevier BV. DOI:

Szczuko, M., Kikut, J., Komorniak, N., Bilicki, J., Celewicz, Z., & Ziętek, M. (2020). The Role of Arachidonic and Linoleic Acid Derivatives in Pathological Pregnancies and the Human Reproduction Process. In International Journal of Molecular Sciences (Vol. 21, Issue 24, p. 9628). MDPI AG. DOI:

Albrecht, J., Sidoryk-Węgrzynowicz, M., Zielińska, M., & Aschner, M. (2010). Roles of glutamine in neurotransmission. In Neuron Glia Biology (Vol. 6, Issue 4, pp. 263–276). Cambridge University Press (CUP). DOI:

Bannai, M., & Kawai, N. (2012). New Therapeutic Strategy for Amino Acid Medicine: Glycine Improves the Quality of Sleep. In Journal of Pharmacological Sciences (Vol. 118, Issue 2, pp. 145–148). Japanese Pharmacological Society. DOI:

Xiao, F., & Guo, F. (2022). Impacts of essential amino acids on energy balance. In Molecular Metabolism (Vol. 57, p. 101393). Elsevier BV. DOI:

Church, D. D., Hirsch, K. R., Park, S., Kim, I.-Y., Gwin, J. A., Pasiakos, S. M., Wolfe, R. R., & Ferrando, A. A. (2020). Essential Amino Acids and Protein Synthesis: Insights into Maximizing the Muscle and Whole-Body Response to Feeding. In Nutrients (Vol. 12, Issue 12, p. 3717). MDPI AG. DOI:

Salmen, S. H., Abu-Tarboush, H. M., Al-Saleh, A. A., & Metwalli, A. A. (2012). Amino acids content and electrophoretic profile of camel milk casein from different camel breeds in Saudi Arabia. In Saudi Journal of Biological Sciences (Vol. 19, Issue 2, pp. 177–183). Elsevier BV. DOI:

Rafiee Tari, N., Gaygadzhiev, Z., Guri, A., & Wright, A. (2021). Effect of pH and heat treatment conditions on physicochemical and acid gelation properties of liquid milk protein concentrate. In Journal of Dairy Science (Vol. 104, Issue 6, pp. 6609–6619). American Dairy Science Association. DOI:

van Lieshout, G. A. A., Lambers, T. T., Bragt, M. C. E., & Hettinga, K. A. (2019). How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. In Critical Reviews in Food Science and Nutrition (Vol. 60, Issue 14, pp. 2422–2445). Informa UK Limited. DOI:

Reeds, P. J. (2000). Dispensable and Indispensable Amino Acids for Humans. In The Journal of Nutrition (Vol. 130, Issue 7, pp. 1835S-1840S). Elsevier BV. DOI:

Al-Anazi, M. S., El-Zahar, K. M., & Rabie, N. A.-H. (2022). Nutritional and Therapeutic Properties of Fermented Camel Milk Fortified with Red Chenopodium quinoa Flour on Hypercholesterolemia Rats. In Molecules (Vol. 27, Issue 22, p. 7695). MDPI AG. DOI:

Althwab, S. A., Alamro, S. A., Al Abdulmonem, W., Allemailem, K. S., Alarifi, S. A., & Hamad, E. M. (2022). Fermented camel milk enriched with plant sterols improves lipid profile and atherogenic index in rats fed high -fat and -cholesterol diets. In Heliyon (Vol. 8, Issue 10, p. e10871). Elsevier BV. DOI:

El-Zahar, K. M., Hassan, M. F. Y., & Al-Qaba, S. F. (2021). Protective Effect of Fermented Camel Milk Containing Bifidobacterium longum BB536 on Blood Lipid Profile in Hypercholesterolemic Rats. In C. S. Johnston (Ed.), Journal of Nutrition and Metabolism (Vol. 2021, pp. 1–12). Hindawi Limited. DOI:

Bai, Y., Zhao, D., & Zhang, H. (2009). Physiochemical properties and amino acid composition of alxa bactrian camel milk and shubat. In Journal of Camel Practice and Research (Vol. 16, pp. 245–251). Diva Enterprises Private Limited.

González, S., Fernández-Navarro, T., Arboleya, S., de los Reyes-Gavilán, C. G., Salazar, N., & Gueimonde, M. (2019). Fermented Dairy Foods: Impact on Intestinal Microbiota and Health-Linked Biomarkers. In Frontiers in Microbiology (Vol. 10). Frontiers Media SA. DOI:

Sukhov, S. V., Kalamkarova, L. I., Il'chenko, L. A., & Zhangabylov, A. K. (1986). Microfloral changes in the small and large intestines of chronic enteritis patients on diet therapy including sour milk products. In Voprosy Pitaniia (Vol. 4, pp. 14–17). GEOTAR-Media Publishing Group.




How to Cite

Zhumabay, A., Serikbayeva, A., Kozykan, S., Yusof, Y. A., & Kozhakhmetova, A. (2023). Determination of the fatty and amino acid composition of camel milk, milk powder and shubat: Camel milk. Potravinarstvo Slovak Journal of Food Sciences, 17, 918–928.

Most read articles by the same author(s)