Determination of the fatty and amino acid composition of camel milk, milk powder and shubat

Camel milk

Authors

  • Aikerim Zhumabay Almaty Technological University, Almaty 050000, Kazakhstan, Tel.: +7-778-312-5278 https://orcid.org/0000-0003-4743-8221
  • Assiya Serikbayeva Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan, Tel.: +7-777-256-5375
  • Sabira Kozykan Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan, Tel.: +7-747-389-7338
  • Yus Aniza Yusof Universiti Putra, Faculty of Engineering, Department of Process and Food Engineering, Malaysia 43400, UPM Serdang
  • Aigul Kozhakhmetova S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan, Tel.: +7-777-234-6778 https://orcid.org/0009-0001-1320-2985

DOI:

https://doi.org/10.5219/1931

Keywords:

camel milk, milk powder, shubat, fatty acids, amino acids

Abstract

Camel milk is considered an essential source of nutrition and an effective remedy with healing properties in treating several diseases.  Shubat, a fermented drink made from camel milk, contains easily digestible proteins, determining its nutritional value. Meanwhile, few studies have analysed the fatty and amino acid composition of Bactrian camel milk, milk powder and shubat in Kazakhstan. In this paper, we used the gas chromatography-mass spectrometry method to determine milk the fatty and amino acid composition of Kazakhstan camel milk and camel milk powder and submit samples. As a result, significant differences in the fatty acid and amino acid compositions were observed among samples of raw milk, milk powder and shubat. differences were found in all amino acids. The most representative fatty acids in the three groups were С16:0, С18:0, С18:1n9c, С14:0 FAs. In camel milk samples, among indispensable amino acids, lysine (29.64%) was the highest in concentration, followed by methionine (25.68%). Some polyunsaturated fatty acids (PUFAs) such as С18:3n3c, С20:4n6, С18:3n3c, С20:3n3c 8,11,14 were found only in shubat samples. Furthermore, we revealed a significant decrease in both dispensable (DAA) and indispensable (IDAA) contents in camel milk powder. Meanwhile, an increase in the quantitative content of amino acids has been observed in shubat, especially in threonine (166.86%), aspargine (156.34%), alanine (114.48%), etc. The results provide a theoretical basis for additional studies of camel milk composition of Bactrian camel in Kazakhstan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Amandykova, M., Dossybayev, K., Mussayeva, A., Saitou, N., Zhunusbayeva, Z., & Bekmanov, B. (2023). A Study of the Genetic Structure of Hybrid Camels in Kazakhstan. In Genes (Vol. 14, Issue 7, p. 1373). MDPI AG. https://doi.org/10.3390/genes14071373

Zhumabai, A. N., & Serikbayeva, A. D. (2022). Nutritional and therapeutic value of camel milk. In Science and education in the modern world: Challenges of the XXI century (p. 61). Astana.

Amandykova, M., Dossybayev, K., Mussayeva, A., Saitou, N., Zhunusbayeva, Z., & Bekmanov, B. (2023). A Study of the Genetic Structure of Hybrid Camels in Kazakhstan. In Genes (Vol. 14, Issue 7, p. 1373). MDPI AG. https://doi.org/10.3390/genes14071373 DOI: https://doi.org/10.3390/genes14071373

Zibaee, S., Hosseini, S. M. Al-Reza, Yousefi, M., Taghipour, A., Kiani, M. A., & Noras, M. R. (2015). Nutritional and Therapeutic Characteristics of Camel Milk in Children: A Systematic Review. In Electronic physician (Vol. 7, Issue 7, pp. 1523–1528). Knowledge Kingdom Publishing. https://doi.org/10.19082/1523 DOI: https://doi.org/10.19082/1523

Swelum, A. A., El-Saadony, M. T., Abdo, M., Ombarak, R. A., Hussein, E. O. S., Suliman, G., Alhimaidi, A. R., Ammari, A. A., Ba-Awadh, H., Taha, A. E., El-Tarabily, K. A., & Abd El-Hack, M. E. (2021). Nutritional, antimicrobial and medicinal properties of Camel’s milk: A review. In Saudi Journal of Biological Sciences (Vol. 28, Issue 5, pp. 3126–3136). Elsevier BV. https://doi.org/10.1016/j.sjbs.2021.02.057 DOI: https://doi.org/10.1016/j.sjbs.2021.02.057

Gorban, A., & Izzeldin, O. (2001). Fatty acids and lipids of camel milk and colostrum. In International Journal of Food Sciences and Nutrition (Vol. 52, Issue 3, pp. 283–287). Informa UK Limited. https://doi.org/10.1080/713671778 DOI: https://doi.org/10.1080/713671778

Miao, J., Xiao, S., & Wang, J. (2023). Comparative Study of Camel Milk from Different Areas of Xinjiang Province in China. In Food Science of Animal Resources (Vol. 43, Issue 4, pp. 674–684). Korean Society for Food Science of Animal Resources. https://doi.org/10.5851/kosfa.2023.e27 DOI: https://doi.org/10.5851/kosfa.2023.e27

Konuspayeva, G., Faye, B., Pauw, E. D., & Focant, J.-F. (2011). Levels and trends of PCDD/Fs and PCBs in camel milk (Camelus bactrianus and Camelus dromedarius) from Kazakhstan. In Chemosphere (Vol. 85, Issue 3, pp. 351–360). Elsevier BV. https://doi.org/10.1016/j.chemosphere.2011.06.097 DOI: https://doi.org/10.1016/j.chemosphere.2011.06.097

Manaer, T., Yu, L., Zhang, Y., Xiao, X.-J., & Nabi, X.-H. (2015). Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin. In Journal of Ethnopharmacology (Vol. 169, pp. 269–274). Elsevier BV. https://doi.org/10.1016/j.jep.2015.04.032 DOI: https://doi.org/10.1016/j.jep.2015.04.032

Asembaeva, E. K., Galstyan, A. G., Khurshudyan, S. A., Nurmukhanbetova, D. E., Velyamov, M. T., Alenova, A. B., & Seydakhmetova, Z. Z. (2017). Development of technology and study of the immunobiological properties of a sour milk beverage based on camel milk. In Voprosy pitaniia (Vol. 86, Issue 6, pp. 67–73). https://doi.org/10.24411/0042-8833-2017-00007

Meydani, M. (2001). Nutrition Interventions in Aging and Age‐Associated Disease. In Annals of the New York Academy of Sciences (Vol. 928, Issue 1, pp. 226–235). Wiley. https://doi.org/10.1111/j.1749-6632.2001.tb05652.x DOI: https://doi.org/10.1111/j.1749-6632.2001.tb05652.x

Konuspayeva, G., & Faye, B. (2021). Recent Advances in Camel Milk Processing. In Animals (Vol. 11, Issue 4, p. 1045). MDPI AG. https://doi.org/10.3390/ani11041045 DOI: https://doi.org/10.3390/ani11041045

Aralbayev, N., Dikhanbayeva, F., Serikbayeva, A., Yusof, Y. A., & Abdul Manaf, Y. N. (2019) Comparative study of amino acid composition of raw and dry camel milk and shubat (Camelus dromedaries). In EurAsian Journal of BioSciences (Vol. 13, pp. 1489 – 1493). Foundation for Enviromental Protection and Research.

Ho, T. M., Zou, Z., & Bansal, N. (2022). Camel milk: A review of its nutritional value, heat stability, and potential food products. In Food Research International (Vol. 153, p. 110870). Elsevier BV. https://doi.org/10.1016/j.foodres.2021.110870 DOI: https://doi.org/10.1016/j.foodres.2021.110870

Benmeziane – Derradji, F. (2021). Evaluation of camel milk: gross composition—a scientific overview. In Tropical Animal Health and Production (Vol. 53, Issue 2). Springer Science and Business Media LLC. https://doi.org/10.1007/s11250-021-02689-0 DOI: https://doi.org/10.1007/s11250-021-02689-0

Elagizi, A., Lavie, C. J., O’Keefe, E., Marshall, K., O’Keefe, J. H., & Milani, R. V. (2021). An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. In Nutrients (Vol. 13, Issue 1, p. 204). MDPI AG. https://doi.org/10.3390/nu13010204 DOI: https://doi.org/10.3390/nu13010204

Kapoor, B., Kapoor, D., Gautam, S., Singh, R., & Bhardwaj, S. (2021). Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. In Current Nutrition Reports (Vol. 10, Issue 3, pp. 232–242). Springer Science and Business Media LLC. https://doi.org/10.1007/s13668-021-00363-3 DOI: https://doi.org/10.1007/s13668-021-00363-3

He, J., Xiao, Y., Orgoldol, K., Ming, L., Yi, L., & Ji, R. (2019). Effects of Geographic Region on the Composition of Bactrian Camel Milk in Mongolia. In Animals (Vol. 9, Issue 11, p. 890). MDPI AG. https://doi.org/10.3390/ani9110890 DOI: https://doi.org/10.3390/ani9110890

Karaman, A. D., Yildiz Akgül, F., Öğüt, S., Seçilmiş Canbay, H., & Alvarez, V. (2022). Gross composition of raw camel’s milk produced in Turkey. In Food Science and Technology (Vol. 42). FapUNIFESP (SciELO). https://doi.org/10.1590/fst.59820 DOI: https://doi.org/10.1590/fst.59820

Chamekh, L., Calvo, M., Khorchani, T., Castro-Gómez, P., Hammadi, M., Fontecha, J., & Yahyaoui, M. H. (2020). Impact of management system and lactation stage on fatty acid composition of camel milk. In Journal of Food Composition and Analysis (Vol. 87, p. 103418). Elsevier BV. https://doi.org/10.1016/j.jfca.2020.103418 DOI: https://doi.org/10.1016/j.jfca.2020.103418

Shingfield, K. J., Bernard, L., Leroux, C., & Chilliard, Y. (2010). Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. In Animal (Vol. 4, Issue 7, pp. 1140–1166). Elsevier BV. https://doi.org/10.1017/s1751731110000510 DOI: https://doi.org/10.1017/S1751731110000510

Arnould, V. M.-R., & Soyeurt, H. (2009). Genetic variability of milk fatty acids. In Journal of Applied Genetics (Vol. 50, Issue 1, pp. 29–39). Springer Science and Business Media LLC. https://doi.org/10.1007/bf03195649 DOI: https://doi.org/10.1007/BF03195649

Balakrishnan, G., & Agrawal, R. (2012). Antioxidant activity and fatty acid profile of fermented milk prepared by Pediococcus pentosaceus. In Journal of Food Science and Technology (Vol. 51, Issue 12, pp. 4138–4142). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-012-0891-9 DOI: https://doi.org/10.1007/s13197-012-0891-9

White, B. (2009). Dietary fatty acids. In American Family Physician (Vol. 80, pp. 345–350). American Academy of General Practice.

Wiktorowska-Owczarek, A., Berezińska, M., & Nowak, J. (2015). PUFAs: Structures, Metabolism and Functions. In Advances in Clinical and Experimental Medicine (Vol. 24, Issue 6, pp. 931–941). Wroclaw Medical University. https://doi.org/10.17219/acem/31243 DOI: https://doi.org/10.17219/acem/31243

Joris, P. J., & Mensink, R. P. (2016). Role of cis-Monounsaturated Fatty Acids in the Prevention of Coronary Heart Disease. In Current Atherosclerosis Reports (Vol. 18, Issue 7). Springer Science and Business Media LLC. https://doi.org/10.1007/s11883-016-0597-y DOI: https://doi.org/10.1007/s11883-016-0597-y

Chen, J., Li, Q., Zhang, Y., Yang, P., Zong, Y., Qu, S., & Liu, Z. (2010). Oleic acid decreases the expression of a cholesterol transport-related protein (NPC1L1) by the induction of endoplasmic reticulum stress in CaCo-2 cells. In Journal of Physiology and Biochemistry (Vol. 67, Issue 2, pp. 153–163). Springer Science and Business Media LLC. https://doi.org/10.1007/s13105-010-0058-y DOI: https://doi.org/10.1007/s13105-010-0058-y

Shahidi, F., & Ambigaipalan, P. (2018). Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. In Annual Review of Food Science and Technology (Vol. 9, Issue 1, pp. 345–381). Annual Reviews. https://doi.org/10.1146/annurev-food-111317-095850 DOI: https://doi.org/10.1146/annurev-food-111317-095850

Das, U. N. (2021). “Cell Membrane Theory of Senescence” and the Role of Bioactive Lipids in Aging, and Aging Associated Diseases and Their Therapeutic Implications. In Biomolecules (Vol. 11, Issue 2, p. 241). MDPI AG. https://doi.org/10.3390/biom11020241 DOI: https://doi.org/10.3390/biom11020241

Marangoni, F., Agostoni, C., Borghi, C., Catapano, A. L., Cena, H., Ghiselli, A., La Vecchia, C., Lercker, G., Manzato, E., Pirillo, A., Riccardi, G., Risé, P., Visioli, F., & Poli, A. (2020). Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. In Atherosclerosis (Vol. 292, pp. 90–98). Elsevier BV. https://doi.org/10.1016/j.atherosclerosis.2019.11.018 DOI: https://doi.org/10.1016/j.atherosclerosis.2019.11.018

Carlson, S. E., & Colombo, J. (2016). Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. In Advances in Pediatrics (Vol. 63, Issue 1, pp. 453–471). Elsevier BV. https://doi.org/10.1016/j.yapd.2016.04.011 DOI: https://doi.org/10.1016/j.yapd.2016.04.011

Szczuko, M., Kikut, J., Komorniak, N., Bilicki, J., Celewicz, Z., & Ziętek, M. (2020). The Role of Arachidonic and Linoleic Acid Derivatives in Pathological Pregnancies and the Human Reproduction Process. In International Journal of Molecular Sciences (Vol. 21, Issue 24, p. 9628). MDPI AG. https://doi.org/10.3390/ijms21249628 DOI: https://doi.org/10.3390/ijms21249628

Albrecht, J., Sidoryk-Węgrzynowicz, M., Zielińska, M., & Aschner, M. (2010). Roles of glutamine in neurotransmission. In Neuron Glia Biology (Vol. 6, Issue 4, pp. 263–276). Cambridge University Press (CUP). https://doi.org/10.1017/s1740925x11000093 DOI: https://doi.org/10.1017/S1740925X11000093

Bannai, M., & Kawai, N. (2012). New Therapeutic Strategy for Amino Acid Medicine: Glycine Improves the Quality of Sleep. In Journal of Pharmacological Sciences (Vol. 118, Issue 2, pp. 145–148). Japanese Pharmacological Society. https://doi.org/10.1254/jphs.11r04fm DOI: https://doi.org/10.1254/jphs.11R04FM

Xiao, F., & Guo, F. (2022). Impacts of essential amino acids on energy balance. In Molecular Metabolism (Vol. 57, p. 101393). Elsevier BV. https://doi.org/10.1016/j.molmet.2021.101393 DOI: https://doi.org/10.1016/j.molmet.2021.101393

Church, D. D., Hirsch, K. R., Park, S., Kim, I.-Y., Gwin, J. A., Pasiakos, S. M., Wolfe, R. R., & Ferrando, A. A. (2020). Essential Amino Acids and Protein Synthesis: Insights into Maximizing the Muscle and Whole-Body Response to Feeding. In Nutrients (Vol. 12, Issue 12, p. 3717). MDPI AG. https://doi.org/10.3390/nu12123717 DOI: https://doi.org/10.3390/nu12123717

Salmen, S. H., Abu-Tarboush, H. M., Al-Saleh, A. A., & Metwalli, A. A. (2012). Amino acids content and electrophoretic profile of camel milk casein from different camel breeds in Saudi Arabia. In Saudi Journal of Biological Sciences (Vol. 19, Issue 2, pp. 177–183). Elsevier BV. https://doi.org/10.1016/j.sjbs.2011.12.002 DOI: https://doi.org/10.1016/j.sjbs.2011.12.002

Rafiee Tari, N., Gaygadzhiev, Z., Guri, A., & Wright, A. (2021). Effect of pH and heat treatment conditions on physicochemical and acid gelation properties of liquid milk protein concentrate. In Journal of Dairy Science (Vol. 104, Issue 6, pp. 6609–6619). American Dairy Science Association. https://doi.org/10.3168/jds.2020-19355 DOI: https://doi.org/10.3168/jds.2020-19355

van Lieshout, G. A. A., Lambers, T. T., Bragt, M. C. E., & Hettinga, K. A. (2019). How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. In Critical Reviews in Food Science and Nutrition (Vol. 60, Issue 14, pp. 2422–2445). Informa UK Limited. https://doi.org/10.1080/10408398.2019.1646703 DOI: https://doi.org/10.1080/10408398.2019.1646703

Reeds, P. J. (2000). Dispensable and Indispensable Amino Acids for Humans. In The Journal of Nutrition (Vol. 130, Issue 7, pp. 1835S-1840S). Elsevier BV. https://doi.org/10.1093/jn/130.7.1835s DOI: https://doi.org/10.1093/jn/130.7.1835S

Al-Anazi, M. S., El-Zahar, K. M., & Rabie, N. A.-H. (2022). Nutritional and Therapeutic Properties of Fermented Camel Milk Fortified with Red Chenopodium quinoa Flour on Hypercholesterolemia Rats. In Molecules (Vol. 27, Issue 22, p. 7695). MDPI AG. https://doi.org/10.3390/molecules27227695 DOI: https://doi.org/10.3390/molecules27227695

Althwab, S. A., Alamro, S. A., Al Abdulmonem, W., Allemailem, K. S., Alarifi, S. A., & Hamad, E. M. (2022). Fermented camel milk enriched with plant sterols improves lipid profile and atherogenic index in rats fed high -fat and -cholesterol diets. In Heliyon (Vol. 8, Issue 10, p. e10871). Elsevier BV. https://doi.org/10.1016/j.heliyon.2022.e10871 DOI: https://doi.org/10.1016/j.heliyon.2022.e10871

El-Zahar, K. M., Hassan, M. F. Y., & Al-Qaba, S. F. (2021). Protective Effect of Fermented Camel Milk Containing Bifidobacterium longum BB536 on Blood Lipid Profile in Hypercholesterolemic Rats. In C. S. Johnston (Ed.), Journal of Nutrition and Metabolism (Vol. 2021, pp. 1–12). Hindawi Limited. https://doi.org/10.1155/2021/1557945 DOI: https://doi.org/10.1155/2021/1557945

Bai, Y., Zhao, D., & Zhang, H. (2009). Physiochemical properties and amino acid composition of alxa bactrian camel milk and shubat. In Journal of Camel Practice and Research (Vol. 16, pp. 245–251). Diva Enterprises Private Limited.

González, S., Fernández-Navarro, T., Arboleya, S., de los Reyes-Gavilán, C. G., Salazar, N., & Gueimonde, M. (2019). Fermented Dairy Foods: Impact on Intestinal Microbiota and Health-Linked Biomarkers. In Frontiers in Microbiology (Vol. 10). Frontiers Media SA. https://doi.org/10.3389/fmicb.2019.01046 DOI: https://doi.org/10.3389/fmicb.2019.01046

Sukhov, S. V., Kalamkarova, L. I., Il'chenko, L. A., & Zhangabylov, A. K. (1986). Microfloral changes in the small and large intestines of chronic enteritis patients on diet therapy including sour milk products. In Voprosy Pitaniia (Vol. 4, pp. 14–17). GEOTAR-Media Publishing Group.

Downloads

Published

2023-11-07

How to Cite

Zhumabay, A., Serikbayeva, A., Kozykan, S., Yusof, Y. A., & Kozhakhmetova, A. (2023). Determination of the fatty and amino acid composition of camel milk, milk powder and shubat: Camel milk. Potravinarstvo Slovak Journal of Food Sciences, 17, 918–928. https://doi.org/10.5219/1931

Similar Articles

You may also start an advanced similarity search for this article.