Proximate and fatty acid analysis of goat and goat-cow mixed milk cheeses
DOI:
https://doi.org/10.5219/2000Keywords:
goat milk, cow milk, cheese yield, nutritional analysisAbstract
Goat milk is a valuable resource for food production thanks to its physical, chemical, and biological properties, easy digestibility, and lower allergenicity. The dairy product market in Kazakhstan is growing, leading to advancements in the industrial processing of goat milk. Consequently, this study aimed to analyse the proximate composition of raw goat milk, produce cheeses from goat milk alone and in combination with cow milk and examine the fatty acid profiles of the resulting cheeses. The findings indicated that goat milk contained a higher percentage of protein, while a 1:1 mixture of goat and cow milk exhibited increased levels of lactose and fat (p <0.001). A soft cheese prepared from goat milk exhibited faster coagulation, higher cheese yield and fat in dry matter. Furthermore, the saturated fatty acid (SFA) content was greater in cheeses made from the goat-cow milk blend compared to those made solely from goat milk (p <0.05). Notably, an increased presence of oleic acid and polyunsaturated fatty acids (PUFAs), such as linoleic, linolenic, and palmitoleic acids, was only detected in 100% goat milk cheeses. Overall, the soft cheese produced from goat milk showed improved nutritional qualities, particularly regarding fatty acid content. However, additional research is needed to assess sensory attributes and consumer acceptance.
Downloads
Metrics
References
Park, Y. W. (2017). Goat Milk – Chemistry and Nutrition. In Handbook of Milk of Non‐Bovine Mammals (pp. 42–83). Wiley. https://doi.org/10.1002/9781119110316.ch2.2 DOI: https://doi.org/10.1002/9781119110316.ch2.2
Nayik, G. A., Jagdale, Y. D., Gaikwad, S. A., Devkatte, A. N., Dar, A. H., & Ansari, M. J. (2022). Nutritional Profile, Processing and Potential Products: A Comparative Review of Goat Milk. In Dairy (Vol. 3, Issue 3, pp. 622–647). MDPI AG. https://doi.org/10.3390/dairy3030044 DOI: https://doi.org/10.3390/dairy3030044
Meena, S., Rajput, Y. S., & Sharma, R. (2014). Comparative fat digestibility of goat, camel, cow and buffalo milk. In International Dairy Journal (Vol. 35, Issue 2, pp. 153–156). Elsevier BV. https://doi.org/10.1016/j.idairyj.2013.11.009 DOI: https://doi.org/10.1016/j.idairyj.2013.11.009
Turkmen, N. (2017). The Nutritional Value and Health Benefits of Goat Milk Components. In Nutrients in Dairy and their Implications on Health and Disease (pp. 441–449). Elsevier. https://doi.org/10.1016/b978-0-12-809762-5.00035-8 DOI: https://doi.org/10.1016/B978-0-12-809762-5.00035-8
Miller, B. A., & Lu, C. D. (2019). Current status of global dairy goat production: an overview. In Asian-Australasian Journal of Animal Sciences (Vol. 32, Issue 8, pp. 1219–1232). Asian Australasian Association of Animal Production Societies. https://doi.org/10.5713/ajas.19.0253 DOI: https://doi.org/10.5713/ajas.19.0253
Akshit, F. N. U., Deshwal, G. K., Sharma, H., Kumar, P., Maddipatla, D. K., Singh, M. P., & Goksen, G. (2023). Technological challenges in production of goat milk products and strategies to overcome them: a review. In International Journal of Food Science & Technology (Vol. 59, Issue 1, pp. 6–16). Wiley. https://doi.org/10.1111/ijfs.16782 DOI: https://doi.org/10.1111/IJFS.16782/v2/response1
Popović Vranješ, A. (2017). Production of hard goat cheese and goat whey from organic goat’s milk. In Mljekarstvo (pp. 177–187). Croatian Dairy Union. https://doi.org/10.15567/mljekarstvo.2017.0302 DOI: https://doi.org/10.15567/mljekarstvo.2017.0302
López-Villafaña, B. P., Rojas-González, S., Elías-Román, R. D., & Rodríguez-Hernández, G. (2023). The evolution of antioxidative properties of protein-derived peptides of Mexican Panela goat and cow milk cheese during its shelf life. In CyTA - Journal of Food (Vol. 21, Issue 1, pp. 57–63). Informa UK Limited. https://doi.org/10.1080/19476337.2022.2152100 DOI: https://doi.org/10.1080/19476337.2022.2152100
Sakr, H., Mohamed, E., & Attalla, N. (2011). Using goat’s milk in making three types of soft cheese. In Journal of Food and Dairy Sciences (Vol. 2, Issue 5, pp. 251–260). Egypts Presidential Specialized Council for Education and Scientific Research. https://doi.org/10.21608/jfds.2011.81950 DOI: https://doi.org/10.21608/jfds.2011.81950
Wang, W., Jia, R., Hui, Y., Zhang, F., Zhang, L., Liu, Y., Song, Y., & Wang, B. (2023). Utilization of two plant polysaccharides to improve fresh goat milk cheese: Texture, rheological properties, and microstructure characterization. In Journal of Dairy Science (Vol. 106, Issue 6, pp. 3900–3917). American Dairy Science Association. https://doi.org/10.3168/jds.2022-22195 DOI: https://doi.org/10.3168/jds.2022-22195
Remini, H., Remini-Sahraoui, Y., Benbara, T., & Sadoun, D. (2024). From farm to cheeseboard: Harnessing the biopreserving performance and enhancing safety of Lactococcus lactis KJ660075 in goat’s milk cheese. In International Dairy Journal (Vol. 157, p. 105977). Elsevier BV. https://doi.org/10.1016/j.idairyj.2024.105977 DOI: https://doi.org/10.1016/j.idairyj.2024.105977
GOST 32940-2014 Raw goat milk. Technical conditions.
GOST 31449-2013 Raw cow's milk. Technical conditions.
GOST 5867-90 Milk and milk products. Methods of determination of fat.
GOST 3624-92 Milk and milk products. Titrimetric methods for determination of acidity.
ST RK 1483-2005 Cow's milk. Test methods for determining the composition and density of milk.
GOST-33959-2016 Brine cheeses. Technical conditions.
Toishimanov, M., Nurgaliyeva, M., Serikbayeva, A., Suleimenova, Z., Myrzabek, K., Shokan, A., & Myrzabayeva, N. (2023). Comparative Analysis and Determination of the Fatty Acid Composition of Kazakhstan’s Commercial Vegetable Oils by GC-FID. In Applied Sciences (Vol. 13, Issue 13, p. 7910). MDPI AG. https://doi.org/10.3390/app13137910 DOI: https://doi.org/10.3390/app13137910
Joensen, H., & Grahl-Nielsen, O. (2000). Discrimination of Sebastes viviparus, Sebastes marinus and Sebastes mentella from Faroe Islands by chemometry of the fatty acid profile in heart and gill tissues and in the skull oil. In Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology (Vol. 126, Issue 1, pp. 69–79). Elsevier BV. https://doi.org/10.1016/s0305-0491(00)00172-3 DOI: https://doi.org/10.1016/S0305-0491(00)00172-3
Borman, P., & Elder, D. (2017). Q2(R1) Validation of Analytical Procedures. In ICH Quality Guidelines (pp. 127–166). Wiley. https://doi.org/10.1002/9781118971147.ch5 DOI: https://doi.org/10.1002/9781118971147.ch5
ALKaisy, Q. H., Al‐Saadi, J. S., AL‐Rikabi, A. K. J., Altemimi, A. B., Hesarinejad, M. A., & Abedelmaksoud, T. G. (2023). Exploring the health benefits and functional properties of goat milk proteins. In Food Science & Nutrition (Vol. 11, Issue 10, pp. 5641–5656). Wiley. https://doi.org/10.1002/fsn3.3531 DOI: https://doi.org/10.1002/fsn3.3531
Prosser, C. G. (2021). Compositional and functional characteristics of goat milk and relevance as a base for infant formula. In Journal of Food Science (Vol. 86, Issue 2, pp. 257–265). Wiley. https://doi.org/10.1111/1750-3841.15574 DOI: https://doi.org/10.1111/1750-3841.15574
Stergiadis, S., Nørskov, N. P., Purup, S., Givens, I., & Lee, M. R. F. (2019). Comparative Nutrient Profiling of Retail Goat and Cow Milk. In Nutrients (Vol. 11, Issue 10, p. 2282). MDPI AG. https://doi.org/10.3390/nu11102282 DOI: https://doi.org/10.3390/nu11102282
Akshit, F. N. U., Mao, T., Kaushik, R., Poswal, V., & Deshwal, G. K. (2024). Global comprehensive review and meta-analysis of goat milk composition by location, publication year and lactation stage. In Journal of Food Composition and Analysis (Vol. 127, p. 105973). Elsevier BV. https://doi.org/10.1016/j.jfca.2024.105973 DOI: https://doi.org/10.1016/j.jfca.2024.105973
Kawęcka, A., & Pasternak, M. (2022). Nutritional and dietetic quality of milk and traditional cheese made from the milk of native breeds of sheep and goats. In Journal of Applied Animal Research (Vol. 50, Issue 1, pp. 39–46). Informa UK Limited. https://doi.org/10.1080/09712119.2021.2020125 DOI: https://doi.org/10.1080/09712119.2021.2020125
Huang, W., Fan, D., Li, W., Meng, Y., & Liu, T. C. (2022). Rapid evaluation of milk acidity and identification of milk adulteration by Raman spectroscopy combined with chemometrics analysis. In Vibrational Spectroscopy (Vol. 123, p. 103440). Elsevier BV. https://doi.org/10.1016/j.vibspec.2022.103440 DOI: https://doi.org/10.1016/j.vibspec.2022.103440
Zhao, X., Wang, C., Cheng, M., Zhang, X., & Jiang, H. (2021). Influence of calcium on the properties of micellar casein in goat milk. In LWT (Vol. 150, p. 111935). Elsevier BV. https://doi.org/10.1016/j.lwt.2021.111935 DOI: https://doi.org/10.1016/j.lwt.2021.111935
Bittante, G., Amalfitano, N., Bergamaschi, M., Patel, N., Haddi, M.-L., Benabid, H., Pazzola, M., Vacca, G. M., Tagliapietra, F., & Schiavon, S. (2022). Composition and aptitude for cheese-making of milk from cows, buffaloes, goats, sheep, dromedary camels, and donkeys. In Journal of Dairy Science (Vol. 105, Issue 3, pp. 2132–2152). American Dairy Science Association. https://doi.org/10.3168/jds.2021-20961 DOI: https://doi.org/10.3168/jds.2021-20961
Currò, S., Manuelian, C. L., De Marchi, M., Goi, A., Claps, S., Esposito, L., & Neglia, G. (2020). Italian local goat breeds have better milk coagulation properties than cosmopolitan breed. In Italian Journal of Animal Science (Vol. 19, Issue 1, pp. 593–601). Informa UK Limited. https://doi.org/10.1080/1828051x.2020.1772130 DOI: https://doi.org/10.1080/1828051X.2020.1772130
Miloradovic, Z., Tomic, N., Kljajevic, N., Levic, S., Pavlovic, V., Blazic, M., & Miocinovic, J. (2021). High Heat Treatment of Goat Cheese Milk. The Effect on Sensory Profile, Consumer Acceptance and Microstructure of Cheese. In Foods (Vol. 10, Issue 5, p. 1116). MDPI AG. https://doi.org/10.3390/foods10051116 DOI: https://doi.org/10.3390/foods10051116
Elgaml, N., Moussa, M. A. M., & Saleh, A. E. (2017). Comparison of the Properties of Halloumi Cheese Made from Goat Milk, Cow Milk and Their Mixture. In Journal of Sustainable Agricultural Sciences (Vol. 0, Issue 0, pp. 77–87). Egypts Presidential Specialized Council for Education and Scientific Research. https://doi.org/10.21608/jsas.2017.1065.1006 DOI: https://doi.org/10.21608/jsas.2017.1065.1006
Boudalia, S., Boudebbouz, A., Gueroui, Y., Bousbia, A., Benada, M., Leksir, C., Boukaabene, Z., Saihi, A., Touaimia, H., Aït-Kaddour, A., & Chemmam, M. (2020). Characterization of traditional Algerian cheese “Bouhezza” prepared with raw cow, goat and sheep milks. In Food Science and Technology (Vol. 40, Issue suppl 2, pp. 528–537). FapUNIFESP (SciELO). https://doi.org/10.1590/fst.35919 DOI: https://doi.org/10.1590/fst.35919
Muñoz-Salinas, F., Andrade-Montemayor, H. M., De la Torre-Carbot, K., Duarte-Vázquez, M. Á., & Silva-Jarquin, J. C. (2022). Comparative Analysis of the Protein Composition of Goat Milk from French Alpine, Nubian, and Creole Breeds and Holstein Friesian Cow Milk: Implications for Early Infant Nutrition. In Animals (Vol. 12, Issue 17, p. 2236). MDPI AG. https://doi.org/10.3390/ani12172236 DOI: https://doi.org/10.3390/ani12172236
Filipczak-Fiutak, M., Pluta-Kubica, A., Domagała, J., Duda, I., & Migdał, W. (2021). Nutritional value and organoleptic assessment of traditionally smoked cheeses made from goat, sheep and cow’s milk. In B. T. Šiler (Ed.), PLOS ONE (Vol. 16, Issue 7, p. e0254431). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0254431 DOI: https://doi.org/10.1371/journal.pone.0254431
Gebreyowhans, S., Zhang, S., Pang, X., Yang, B., Wang, T., Wu, Z., Lu, J., & Lv, J. (2020). Changes in texture, composition and sensory characteristics of Camembert cheese made from a mixture of goat milk and cow milk during ripening. In International Journal of Dairy Technology (Vol. 73, Issue 3, pp. 604–615). Wiley. https://doi.org/10.1111/1471-0307.12699 DOI: https://doi.org/10.1111/1471-0307.12699
Klir Šalavardić, Ž., Novoselec, J., Ronta, M., Čolović, D., Šperanda, M., & Antunović, Z. (2021). Fatty Acids of Semi-Hard Cheese Made from Milk of Goats Fed Diets Enriched with Extruded Linseed or Pumpkin Seed Cake. In Foods (Vol. 11, Issue 1, p. 6). MDPI AG. https://doi.org/10.3390/foods11010006 DOI: https://doi.org/10.3390/foods11010006
Paszczyk, B., & Łuczyńska, J. (2020). The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses. In Foods (Vol. 9, Issue 11, p. 1667). MDPI AG. https://doi.org/10.3390/foods9111667 DOI: https://doi.org/10.3390/foods9111667
Ibrahim, A., Zahran, H., Awaad, S., & Hegab, O. (2023). Comparative evaluation of fatty acid profiles and lipid nutritional indexes in Egyptian fresh cow, buffalo, goat soft cheeses and their mixtures. In Egyptian Journal of Chemistry (Vol. 0, Issue 0, pp. 0–0). Egypts Presidential Specialized Council for Education and Scientific Research. https://doi.org/10.21608/ejchem.2023.206528.7879 DOI: https://doi.org/10.21608/ejchem.2023.206528.7879
Szterk, A., Ofiara, K., Strus, B., Abdullaev, I., Ferenc, K., Sady, M., Flis, S., & Gajewski, Z. (2022). Content of Health-Promoting Fatty Acids in Commercial Sheep, Cow and Goat Cheeses. In Foods (Vol. 11, Issue 8, p. 1116). MDPI AG. https://doi.org/10.3390/foods11081116 DOI: https://doi.org/10.3390/foods11081116
Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. In Frontiers in Physiology (Vol. 8). Frontiers Media SA. https://doi.org/10.3389/fphys.2017.00902 DOI: https://doi.org/10.3389/fphys.2017.00902
Liao, G., Han, H., Wang, T., Li, H., Qian, Y., Zhu, M., Jia, Q., & Qiu, J. (2024). Comparative analysis of the fatty acid profiles in goat milk during different lactation periods and their interactions with volatile compounds and metabolites. In Food Chemistry (Vol. 460, p. 140427). Elsevier BV. https://doi.org/10.1016/j.foodchem.2024.140427 DOI: https://doi.org/10.1016/j.foodchem.2024.140427
Ali, A. H., Khalifa, S. A., Gan, R.-Y., Shah, N., & Ayyash, M. (2023). Fatty acids, lipid quality parameters, and amino acid profiles of unripened and ripened cheeses produced from different milk sources. In Journal of Food Composition and Analysis (Vol. 123, p. 105588). Elsevier BV. https://doi.org/10.1016/j.jfca.2023.105588 DOI: https://doi.org/10.1016/j.jfca.2023.105588
Lu, Y., Zhao, J., Xin, Q., Yuan, R., Miao, Y., Yang, M., Mo, H., Chen, K., & Cong, W. (2024). Protective effects of oleic acid and polyphenols in extra virgin olive oil on cardiovascular diseases. In Food Science and Human Wellness (Vol. 13, Issue 2, pp. 529–540). Tsinghua University Press. https://doi.org/10.26599/fshw.2022.9250047 DOI: https://doi.org/10.26599/FSHW.2022.9250047
Kawęcka, A., Radkowska, I., Kawęcka, A., & Sikora, J. (2020). Concentratıons of selected bıoactıve components ın tradıtıonal cheeses made from goat’s, cow’s and sheep’s mılk. In Journal of Elementology (Issue 2/2020). Polish Society for Magnesium Research. https://doi.org/10.5601/jelem.2019.24.3.1907 DOI: https://doi.org/10.5601/jelem.2019.24.3.1907
Mercola, J., & D’Adamo, C. R. (2023). Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. In Nutrients (Vol. 15, Issue 14, p. 3129). MDPI AG. https://doi.org/10.3390/nu15143129 DOI: https://doi.org/10.3390/nu15143129
Hamilton, J. S., & Klett, E. L. (2021). Linoleic acid and the regulation of glucose homeostasis: A review of the evidence. In Prostaglandins, Leukotrienes and Essential Fatty Acids (Vol. 175, p. 102366). Elsevier BV. https://doi.org/10.1016/j.plefa.2021.102366 DOI: https://doi.org/10.1016/j.plefa.2021.102366
Taboada, N., Van Nieuwenhove, C., Alzogaray, S. L., & Medina, R. (2015). Influence of autochthonous cultures on fatty acid composition, esterase activity and sensory profile of Argentinean goat cheeses. In Journal of Food Composition and Analysis (Vol. 40, pp. 86–94). Elsevier BV. https://doi.org/10.1016/j.jfca.2014.12.013 DOI: https://doi.org/10.1016/j.jfca.2014.12.013
Cosentino, C., Colonna, M. A., Musto, M., Dimotta, A., Freschi, P., Tarricone, S., Ragni, M., & Paolino, R. (2021). Effects of dietary supplementation with extruded linseed and oregano in autochthonous goat breeds on the fatty acid profile of milk and quality of Padraccio cheese. In Journal of Dairy Science (Vol. 104, Issue 2, pp. 1445–1453). American Dairy Science Association. https://doi.org/10.3168/jds.2020-18805 DOI: https://doi.org/10.3168/jds.2020-18805
Bodnár, Á., Egerszegi, I., Kuchtik, J., Penksza, K., Póti, P., & Pajor, F. (2021). Effect of grazing on composition, fatty acid profile and nutritional indices of the goat milk and cheese. In Journal of Animal and Feed Sciences (Vol. 30, Issue 4, pp. 320–328). The Kielanowski Institute of Animal Physiology and Nutrition, PAS. https://doi.org/10.22358/jafs/144843/2021 DOI: https://doi.org/10.22358/jafs/144843/2021
Currò, S., Manuelian, C., De Marchi, M., Claps, S., Rufrano, D., & Neglia, G. (2019). Effects of Breed and Stage of Lactation on Milk Fatty Acid Composition of Italian Goat Breeds. In Animals (Vol. 9, Issue 10, p. 764). MDPI AG. https://doi.org/10.3390/ani9100764 DOI: https://doi.org/10.3390/ani9100764
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.