The possibility of a halal mix probiotic medium for the cultivation of Lactobacillus plantarum N16 and Saccharomyces cerevisiae

Authors

  • Yetti Marlida University of Andalas, Faculty of Animal Science, Department of Animal Nutrition and Feed Technology, Padang 25163, Indonesia https://orcid.org/0000-0001-9134-3954
  • Harnentis University of Andalas, Faculty of Animal Science, Department of Animal Nutrition and Feed Technology, Padang 25163, Indonesia
  • Azizah University of Andalas, Faculty of Animal Science, Department of Animal Nutrition and Feed Technology, Padang 25163, Indonesia
  • Yuliaty Shafan Nur University of Andalas, Faculty of Animal Science, Department of Animal Nutrition and Feed Technology, Padang 25163, Indonesia
  • Frederick Adzitey University for Development Studies, Faculty of Agriculture, Food and Consumer Sciences, Department of Animal Science, P.O. Box TL 1882, Tamale, Ghana https://orcid.org/0000-0002-8814-0272
  • Norliza Julmohammad Universiti Malaysia Sabah, Faculty of Food Science and Nutrition, Department of Food Science and Nutrition, 88400, Kota Kinabalu, Sabah, Malaysia https://orcid.org/0000-0003-1816-7127
  • Nurul Huda Universiti Malaysia Sabah, Faculty of Food Science and Nutrition, Department of Food Science and Nutrition, 88400, Kota Kinabalu, Sabah, Malaysia https://orcid.org/0000-0001-9867-6401

DOI:

https://doi.org/10.5219/1713

Keywords:

Halal, Lactobacillus plantarum, Saccharomyces cerevisiae, viability, biomass cell

Abstract

This study aimed to determine the effects of interaction between media type (halal mix preparation) and culture mixtures of Lactobacillus plantarum N16 and Saccharomyces cerevisiae (probiotics). A completely randomised factorial design (CRFD) consisting of 2 factors and three replications was used, where factor A was a mixture of Lactobacillus plantarum N16 and Saccharomyces cerevisiae at a ratio of 1:1 (A1); 1:2 (A2) and 2:1 (A3) and factor B was the type of growth media, that is, control (B1), whey tofu, molasses, and fish waste flour (B2), and coconut water, onggok flour and shrimp waste flour (B3). The variables measured were viability, cell biomass, and pH. The results showed interactions between factors A and B, which were significantly different (p <0.05) in terms of viability, cell biomass, and pH. Based on the results of the study, it can be concluded that the mixture of Lactobacillus plantarum N16 and Saccharomyces cerevisiae at a ratio of 2:1 (A3), using coconut water, onggok flour, and shrimp waste flour (B3) as medium and incubated at 36 °C for 24 hours was the best medium. It had a 2.37 viability, 42.33 mg/ml biomass cell, and a pH of 2.37.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. In Nature Reviews Gastroenterology & Hepatology (Vol. 11, Issue 8, pp. 506–514). Springer Science and Business Media LLC. https://doi.org/10.1038/nrgastro.2014.66 DOI: https://doi.org/10.1038/nrgastro.2014.66

Marlida, Y., Huda, N., Harnentis, Shafan Nur, Y., Mekar Lestari, N., Adzitey, F., & Sulaiman, M. R. (2021). Potential probiotic yeast isolated from an Indonesian indigenous fermented fish (Ikan Budu). In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 460–466). HACCP Consulting. https://doi.org/10.5219/1544 DOI: https://doi.org/10.5219/1544

Revolledo, L., Ferreira, A. J. P., & Mead, G. C. (2006). Prospects in Salmonella Control: Competitive Exclusion, Probiotics, and Enhancement of Avian Intestinal Immunity. In Journal of Applied Poultry Research (Vol. 15, Issue 2, pp. 341–351). Elsevier BV. https://doi.org/10.1093/japr/15.2.341 DOI: https://doi.org/10.1093/japr/15.2.341

Harnentis, H., Marlida, Y., Nur, Y. S., Wizna, W., Santi, M. A., Septiani, N., Adzitey, F., & Huda, N. (2020). Novel probiotic lactic acid bacteria isolated from indigenous fermented foods from West Sumatera, Indonesia. In Veterinary World (Vol. 13, Issue 9, pp. 1922–1927). Veterinary World. https://doi.org/10.14202/vetworld.2020.1922-1927 DOI: https://doi.org/10.14202/vetworld.2020.1922-1927

Giannenas, I., Papadopoulos, E., Tsalie, E., Triantafillou, E., Henikl, S., Teichmann, K., & Tontis, D. (2012). Assessment of dietary supplementation with probiotics on performance, intestinal morphology and microflora of chickens infected with Eimeria tenella. In Veterinary Parasitology, (Vol. 188, Issue. 1-2, pp. 31–40). Elsevier Netherland. https://doi.org/10.1016/j.vetpar.2012.02.017 DOI: https://doi.org/10.1016/j.vetpar.2012.02.017

Pedroso, A., Hurley-Bacon, A., Zedek, A., Kwan, T., Jordan, A., Avellaneda, G., Hofacre, C., Oakley, B., Collett, S., Maurer, J., & Lee, M. (2013). Can Probiotics Improve the Environmental Microbiome and Resistome of Commercial Poultry Production? In International Journal of Environmental Research and Public Health (Vol. 10, Issue 10, pp. 4534–4559). MDPI AG. https://doi.org/10.3390/ijerph10104534 DOI: https://doi.org/10.3390/ijerph10104534

Rahman, M., Mustari, A., Salauddin, M., & Rahman, M. (2013). Effects of probiotics and enzymes on growth performance and haematobiochemical parameters in broilers. In Journal of the Bangladesh Agricultural University, (Vol. 11, Issue 1, pp. 111–118). Bangladesh Agricultural University Research System (BAURES), BAU, Mymensingh. https://doi.org/10.3329/jbau.v11i1.18221 DOI: https://doi.org/10.3329/jbau.v11i1.18221

Lara-Hidalgo C. E., Hernández-Sánchez H., Hernández-Rodríguez, C., & Dorantes-Álvarez, L. (2017). Yeasts in fermented foods and their probiotic potential. In Austin Journal of Nutrition & Metabolism. (Vol. 4, Issue 1, pp. 1045–1053). Austin Publishing Group US.

Paramithiotis, S., Gioulatos, S., Tsakalidou, E., & Kalantzopoulos, G. (2006). Interaction between Saccharomyhces cerevisiae and lactic acid bacteria in sourdough. In Process Biochemistry. (Vol. 41, pp. 2429–2433). Elsevier Netherland. https://doi.org/10.1016/j.procbio.2006.07.001 DOI: https://doi.org/10.1016/j.procbio.2006.07.001

Pato, U., Yusmarini Y., Shanti F., Tartila, Fani F., Latifa H., Rahma Y., Indra F., & Rachmiwaty Y. (2021). Optimization of bacteriocin production by Pediococcus pentosaceus 2397 in inhibiting Pectobacterium carotovorum subsp. carotovorum. In Bulgarian Journal of Agricultural Science. (Vol. 27, Issue 6, pp. 1100–1107). Agricultural Academy in Bulgaria.

Pires, E. J., Teixeira, J. A ., Brányik, T.,Côrte-Real, A & Vicente, A. A .(2013). Maintaining yeast viability in continuous primary beer fermentation. In Journal of the Instiyute of Brewing. (Vol. 120, pp. 52–59). John Wiley & Sons, Inc. https://doi.org/10.1002/jib.111 DOI: https://doi.org/10.1002/jib.111

Matouskova, P., Hoova, J., Rysavka, P., & Marova, I. (2021). Stress Effect of Food Matrices on Viability of Probiotic Cells during Model Digestion. In Microorganisms (Vol. 9, Issue 8, p. 1625). MDPI AG. https://doi.org/10.3390/microorganisms9081625 DOI: https://doi.org/10.3390/microorganisms9081625

Carlos, A. R., Santos, J., Semedo-Lemsaddek, T., Barreto-Crespo, M. T., & Tenreiro, R. (2009). Enterococci from artisanal dairy products show high levels of adaptability. In International Journal of Food Microbiology (Vol. 129, Issue 2, pp. 194–199). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2008.11.003 DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.11.003

Dalgaard, P., & Koutsoumanis, K. (2001). Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. In Journal of Microbiological Methods (Vol. 43, Issue 3, pp. 183–196). Elsevier BV. https://doi.org/10.1016/s0167-7012(00)00219-0 DOI: https://doi.org/10.1016/S0167-7012(00)00219-0

Acu, M., Kinik, O., & Yerlikaya, O. (2021). Probiotic viability, viscosity, hardness properties and sensorial quality of synbiotic ice creams produced from goat’s milk. In Food Science and Technology (Vol. 41, Issue 1, pp. 167–173). FapUNIFESP (SciELO). https://doi.org/10.1590/fst.39419 DOI: https://doi.org/10.1590/fst.39419

Davis, C. (2014). Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. In Journal of Microbiological Methods, (Vol. 103, pp. 9–17). Elsevier Netherland. https://doi.org/10.1016/j.mimet.2014.04.012 DOI: https://doi.org/10.1016/j.mimet.2014.04.012

Pepper, I. L., Gerba, C. P., & Brusseau, M. L. (2006). Environmental and Pollution Science, 2e. Academic Press, San Diego, CA. eBook ISBN: 9780080494791.

Wang, Y., Tashiro, Y., & Sonomoto, K. (2015). Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. In Journal of Bioscience and Bioengineering, (Vol. 119, pp. 10–18). Society for Biotechnology, Japan. https://doi.org/10.1016/j.jbiosc.2014.06.003 DOI: https://doi.org/10.1016/j.jbiosc.2014.06.003

Safari, R., Motamedzadegan, A., Ovissipour, M., Regenstein, J. M., Gildberg, A., & Rasco, B. (2009). Use of Hydrolysates from Yellowfin Tuna (Thunnus albacares) Heads as a Complex Nitrogen Source for Lactic Acid Bacteria. In Food and Bioprocess Technology (Vol. 5, Issue 1, pp. 73–79). Springer Science and Business Media LLC. https://doi.org/10.1007/s11947-009-0225-8 DOI: https://doi.org/10.1007/s11947-009-0225-8

Ben Rebah, F., & Miled, N. (2012). Fish processing wastes for microbial enzyme production: a review. In 3 Biotech (Vol. 3, Issue 4, pp. 255–265). Springer Science and Business Media LLC. https://doi.org/10.1007/s13205-012-0099-8 DOI: https://doi.org/10.1007/s13205-012-0099-8

Stadie, J., Gulitz, A., Ehrmann, M. A., & Vogel, R. F. (2013). Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. In Food Microbiology (Vol. 35, Issue 2, pp. 92–98). Elsevier BV. https://doi.org/10.1016/j.fm.2013.03.009 DOI: https://doi.org/10.1016/j.fm.2013.03.009

Quan Liu, S., & Tsao, M. (2010). Biocontrol of spoilage yeasts and moulds by Williopsis saturnus var. saturnus in yoghurt. In Nutrition & Food Science (Vol. 40, Issue 2, pp. 166–175). Emerald. https://doi.org/10.1108/00346651011029192 DOI: https://doi.org/10.1108/00346651011029192

De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of Lactobacilli. In Journal of Applied Bacteriology (Vol. 23, Issue 1, pp. 130–135). Wiley. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x DOI: https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

Ansari, N. F., Chetana, A., Prasad, E.M., Birajdar, R., & Naidu, N. (2017). Evaluation of whey water as growth medium for Lactobacillus species. In International Journal of Applied Biology and Pharmaceutical Technology, (Vol. 8, Issue 1, pp. 38–42). Fortune Journals Houston. http://dx.doi.org/10.21276/ijabpt DOI: https://doi.org/10.21276/ijabpt

NURLAELA, S., SUNARTI, T. C., & MERYANDINI, A. (2017). Formula Media Pertumbuhan Bakteri Asam Laktat Pediococcus pentosaceus Menggunakan Substrat Whey Tahu. In Jurnal Sumberdaya Hayati (Vol. 2, Issue 2, pp. 31–38). Institut Pertanian Bogor. https://doi.org/10.29244/jsdh.2.2.31-38 DOI: https://doi.org/10.29244/jsdh.2.2.31-38

Utami, T., Kusuma, E. N., Satiti, R., Rahayu, E. S., & Cahyanto, N. M. (2019). Hydrolysis of meat and soybean proteins using crude bromelain to produce halal peptone as a complex nitrogen source for the growth of lactic acid bacteria. In International Food Research Journal, (Vol. 26, Issue 1, pp. 117–122). Faculty of Food Science & Technology, UPM. Malaysia.

Nahariah, N., Legowo, A. M., Abustam, E., & Hintono, A. (2015). Angiotensin I-Converting Enzyme Inhibitor Activity on Egg Albumen Fermentation. In Asian-Australasian Journal of Animal Sciences (Vol. 28, Issue 6, pp. 855–861). Asian Australasian Association of Animal Production Societies. https://doi.org/10.5713/ajas.14.0419 DOI: https://doi.org/10.5713/ajas.14.0419

Maslami, V. (2019). Isolasi dan produksi asam glutamatdari bakteri asam laktat (BAL) asal pangan fermentasi sumatera barat dan aplikasinya dalam meningkatkam performa dan kualitas kaekas broiler. PhD Thesis, Universitas Andalas. Padang. Indonesia.

Younis, G., Awad, A., Dawod, R. E., & Yousef, N. E. (2017). Antimicrobial activity of yeasts against some pathogenic bacteria. In Veterinary World (Vol. 10, Issue 8, pp. 979–983). Veterinary World. https://doi.org/10.14202/vetworld.2017.979-983 DOI: https://doi.org/10.14202/vetworld.2017.979-983

Xie, N., Zhou, T., & Li, B. (2012). Kefir yeasts enhance probiotic potentials of Lactobacillus paracasei H9: The positive effects of coaggregation between the two strains. In Food Research International (Vol. 45, Issue 1, pp. 394–401). Elsevier BV. https://doi.org/10.1016/j.foodres.2011.10.045 DOI: https://doi.org/10.1016/j.foodres.2011.10.045

Suharja, A. A. S., Henriksson, A., & Liu, S.-Q. (2012). Impact ofSaccharomyces Cerevisiaeon Viability of ProbioticLactobacillus Rhamnosusin Fermented Milk under Ambient Conditions. In Journal of Food Processing and Preservation (Vol. 38, Issue 1, pp. 326–337). Wiley. https://doi.org/10.1111/j.1745-4549.2012.00780.x DOI: https://doi.org/10.1111/j.1745-4549.2012.00780.x

Downloads

Published

2022-07-04

How to Cite

Marlida, Y., Harnentis, Azizah, Shafan Nur, Y., Adzitey, F., Julmohammad, N., & Huda, N. (2022). The possibility of a halal mix probiotic medium for the cultivation of Lactobacillus plantarum N16 and Saccharomyces cerevisiae. Potravinarstvo Slovak Journal of Food Sciences, 16, 279–286. https://doi.org/10.5219/1713