Monitoring of a gluten content in selected meat products from three biggest meat producers in Slovakia

Authors

  • Marcel Mati Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Department of Biotechnology and Food Science
  • Ladislav Staruch Department of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava

DOI:

https://doi.org/10.5219/167

Keywords:

gluten, ELISA test, gluten intolerance, gluten allergy

Abstract

The work is focused on a monitoring of a gluten content in selected meat products from three biggest and most popular meat producers in Slovakia. Gluten is a type of protein complex which is typical naturally presented component of wheat, barley and rye. Flour from this sources with natural gluten content is also added into the some type of meat products and other foodstuffs for a technological reasons hand in hand with economic reasons.  Some of the gluten quantities could be hazardous for sensitive people as celiatics and allergic to gluten. Within the context of this reasons there is a need to control the amounts of this hidden type of gluten inclusive of spice mixes using in a meat production. Monitoring by itself was realized with a use of the sandwich ELISA RIDASCREEN® Fast Gliadin test. ELISA means enzyme linked immunosorbent assay. It is based on a specific reaction among the enzyme and antigen leading to a creation of a complex.  This test provides us exact quantitification of a gluten content in this type of food products using a colorimetric reaction of a complex by observing of all fundamentals of this technique. There were analysed 16 meat products and 5 types of spice mixes in total.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adamberg, K. – Kask, S. – Laht, T. M. – Paalme, T.: The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. International Journal of Food Microbiology, 85, 2003, s. 171 - 183. DOI: https://doi.org/10.1016/S0168-1605(02)00537-8

Ammor, M.S. – Flórez, A.B. – Mayo, B.: Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiology, 24, 2007, s. 559 - 570. DOI: https://doi.org/10.1016/j.fm.2006.11.001

Ayala-Hernandez, I. – Hassan, A.N. – Goff, H.D. – Mira de Orduna, R. – Corredig, M.: Production, isolation and characterization of exopolysaccharides produced by Lactococcus lactis subsp. cremoris JFR1 and their interaction with milk proteins: Effect of pH and media composition. International Dairy Journal, 18, 2008, s. 1109 - 1118. DOI: https://doi.org/10.1016/j.idairyj.2008.06.008

Ayala-Hernández, I. – Hassan, A.N. – Goff, H.D. – Corredig, M.: Effect of protein supplementation on the rheological characteristics of milk permeates fermented with exopolysaccharide-producing Lactococcus lactis subsp. cremoris. Food Hydrocolloids, 23, 2009, s. 129 - 1304. DOI: https://doi.org/10.1016/j.foodhyd.2008.11.004

Balcázar, J.L. – Vendrell, D. – De Blas, I. – Ruiz-Zarzuela, I. – Muzquiz, J.L. – Girones, O.: Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture, 278, 2008, s. 188 - 191. DOI: https://doi.org/10.1016/j.aquaculture.2008.03.014

Batish, V.K. – Roy, U. – Lal, R. – Grover, S.: Antifungal atributes of lactic acid bacteria – A review. Critical Reviews in Biotechnology, 17, 1997, s. 2009 - 2225. DOI: https://doi.org/10.3109/07388559709146614

Beresford, T.P. – Fitzsimons, N.A. – Brennan, N.L. – Cogan, T.M.: Recent advances in cheese microbiology. International Dairy Journal, 11, 2001, s. 259 - 274. DOI: https://doi.org/10.1016/S0958-6946(01)00056-5

Bibal, B. – Goma, G. – Vayssier, Y. – Pareilleur, A.: Influence of pH, lactose and lactic acid on the growth of Streptococcus cremoris: a kinetic study. Applied Microbiology and Biotechnology, 28, 1988, s. 340 - 344. DOI: https://doi.org/10.1007/BF00268192

Bover-Cid, S. – Hugas, M. – Izquierdo-Pulido, M. – Vidal-Carou, M.C.: Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. International Journal of Food Microbiology, 66, 2001, s. 185 - 189. DOI: https://doi.org/10.1016/S0168-1605(00)00526-2

Bover-Cid, S. – Miguélez-Arrizado, M.J. – Becker, B. – Holzapfel, W.H. – Vidal-Carou, M.C.: Amino acid decarboxylation by Lactobacillus curvatus CTC273 affected by the pH and glucose availability. Food Microbiology, 25, 2008, s. 269 - 277. DOI: https://doi.org/10.1016/j.fm.2007.10.013

Buňková, L. – Buňka, F. – Pollaková, E. – Podešvová, T. – Dráb, V. – Kráčmar, S.: Vliv aerobního/anaerobního prostředí na dekarboxylázovou aktivitu vybraných bakterií mléčného kvašení. Potravinárstvo, 4, 2010, s. 5 - 7. DOI: https://doi.org/10.5219/43

Buňková, L. – Buňka, F. – Hlobilová, M. – Vanátková, Z. – Nováková, D. – Dráb, V.: Tyramine production of technological important strains of Lactobacillus, Lactococcus and Streptococcus. European Food Research and Technology, 229, 2009, s. 533 - 538. DOI: https://doi.org/10.1007/s00217-009-1075-3

Cachon, R. – Diviés, C.: Generalized model of the effect of pH on lactate fermentation and citrate bioconversion in Lactococcus lactis ssp. lactis biovar diacetylactis. Applied Microbiology and Biotechnology, 41, 1994, s. 694 - 699. DOI: https://doi.org/10.1007/BF00167287

Casalta, E. – Montel, M.-Ch.: Safety assessment of dairy microorganisms: The Lactococcus genus. International Journal of Food Microbiology, 126, 2008, s. 271 - 273. DOI: https://doi.org/10.1016/j.ijfoodmicro.2007.08.013

Castellano, P. – Belfiore, C. – Fadda, S. – Vignolo, G.: A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Science, 79, 2008, s. 483 - 499. DOI: https://doi.org/10.1016/j.meatsci.2007.10.009

Corroler, D. – Desmasures, N. – Gueguen, M.: Correlation between polymerase chain reaction of analysis of the histidine biosynthesis operon, randomly amplified polymorphic DNA analysis and phenotypic characterization of dairy Lactococcus isolates. Applied Microbiology and Biotechnology, 51, 1999, s. 91 - 99. DOI: https://doi.org/10.1007/s002530051368

De Vuyst, L. – Degeest, B.: Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23 (2), 1999, s. 153 - 177. DOI: https://doi.org/10.1016/S0168-6445(98)00042-4

Emborg, J. – Dalgaard, P.: Growth, inactivation and histamine formation of Morganella psychrotolerans and Morganella morganii – development and evaluation of predictive models. International Journal of Food Microbiology, 128, 2008, s. 234 - 243. DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.08.015

Fernández, M. – Linares, D.M. – Rodríguez, A. – Alvarez, M.A.: Factors affecting tyramine production in Enterococcus durans IPLA 655. Applied Microbiology and Biotechnology, 73, 2007, s. 1400 - 1406. DOI: https://doi.org/10.1007/s00253-006-0596-y

Flórez, A.B. – Delgado, S. – Mayo, B.: Antimicrobial susceptibility of lactic acid bacteria isolated from a cheese environment. Canadian Journal of Microbiology, 51, 2005, s. 51 - 58. DOI: https://doi.org/10.1139/w04-114

Folkenberg, D.M. – Dejmek, P. – Skriver, A. – Ipsen, R.: Relation between sensory texture properties and exopolysaccharide distribution in set and in stirred yogurts produced with different starter cultures. Journal of Texture Studies, 36, 2005, s. 174 - 189. DOI: https://doi.org/10.1111/j.1745-4603.2005.00010.x

Gálvez, A. – Lopez, R.L. – Abriouel, H. – Valdivia, E. – Omar, N.B.: Application of bacteriocins in the control of foodborne pathogenic andspoilage bacteria. Critical Reviews in Biotechnology, 28, 2008, s. 125 - 152. DOI: https://doi.org/10.1080/07388550802107202

Gardini, F. – Martuscelli, M. – Caruso, M.C. – Galgano, F. – Crudele, M.A. – Favati, F. – Guerzoni, M.E. – Suzzi, G.: Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. International Journal of Food Microbiology, 64, 2001, s. 105 - 117. DOI: https://doi.org/10.1016/S0168-1605(00)00445-1

Gardini, F. – Zaccarelli, A. - Belleti, N. – Faustini, F. – Cavazza, A. – Martuscelli, M. – Mastrocola, D. – Suzzi, G.: Factors influencing biogenic amine production by a strain of Oenococcus oeni in a model system. Food Control, 16, 2005, s. 609 - 616. DOI: https://doi.org/10.1016/j.foodcont.2004.06.023

Garriga, M. – Pascual, M. – Monfort, J. M. – Hugas, M.: Selection of lactobacilli for chicken probiotic adjuncts. Journal of Applied Microbiology, 84, 1998, s. 125 - 132. DOI: https://doi.org/10.1046/j.1365-2672.1997.00329.x

Gonzáles, L. – Sacristán, N. – Arenas, R. – Fresno, J.M. – Tornadijo, M.E.: Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese. Food Microbiology, 27, 2010, s. 592 - 597. DOI: https://doi.org/10.1016/j.fm.2010.01.004

Gonzáles, L. – Sandoval, H. – Sacristán, N. – Castro, J. M. – Fresno, J. M. – Tornadijo, M. E.: Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control, 18, 2007, s. 716 - 722. DOI: https://doi.org/10.1016/j.foodcont.2006.03.008

Görner, F. – Valík, Ľ.: Aplikovaná mikrobiológia požívatín. Malé centrum, Bratislava, 2004, 528 s.

Greif, G. – Greifová, M. – Karovičová, J.: Effects of NaCl concentration and initial pH value on biogenic amine formation dynamics by Enterobacter spp. bacteria in model conditions. Journal of Food and Nutrition Research, 45, 2006, s. 21 - 29.

Greif, G. – Greifová, M. – Karovičová, J.: Tvorba kadaverínu a amoniaku činnosťou niektorých baktérií za modelových podmienok. Czech Journal of Food Science, 16, 1997, s. 53 - 56.

Greif, G. – Greifová, M.: Štúdium analýzy biogénnych amínov vo vybraných mliečnych výrobkoch. Mliekarstvo, 37 (2), 2006, s. 38 - 42.

Greifová, M. – Krajčová, E. – Greif, G. – Pagurko, A. – Schmidt, S.: Antimikrobiálna aktivita Lactobacillus reuteri a produkty metabolizmu počas fermentácie glycerolu. Mliekarstvo, 39 (1), 2008, s. 19 - 24.

Grobben, G.J. – Chin-Joe, I. – Kitzen, V.A. – Boels, I.C. – Boer, F. – Sikkema, J.: Enhancement of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a simplified defined medium. Applied and Environmental Microbiology, 64, 1998, s. 1333 - 1337. DOI: https://doi.org/10.1128/AEM.64.4.1333-1337.1998

Haines, W.C. – Harmon, L.G.: Effect of selected lactic acid bacteria on growth of Staphylococcus aureus and production of enterotoxin. Applied Microbiology, 25, 1973a, s. 436 - 441. DOI: https://doi.org/10.1128/am.25.3.436-441.1973

Haines, W.C. – Harmon, L.G.: Effect of variations in conditions of incubation upon inhibition of Staphylococcus aureus by Pediococcus cerevisiae and Streptococcus lactis. Applied Microbiology, 25, 1973b, s. 169 - 172. DOI: https://doi.org/10.1128/am.25.2.169-172.1973

Hassan, A.N. – Frank, J.F. – Elsoda, M.: Observation of bacterial exopolysaccharide in dairy products using cryo-scanning electron microscopy. International Dairy Journal, 13, 2003, s. 755 - 762. DOI: https://doi.org/10.1016/S0958-6946(03)00101-8

Hassan, A.N. – Frank, J.F. – Schmidt, K.A. – Shalabi, S.I.: Rheological properties of yogurt made with encapsulated nonropy lactic cultures. Journal of Dairy Science, 79, 1996, s. 2091 - 2097. DOI: https://doi.org/10.3168/jds.S0022-0302(96)76582-7

Herrero, M. – Mayo, B. – Gonzáles, B. – Suárez, J.E.: Evaluation of technologically important traits in lactic acid bacteria isolated from spontaneous fermentations. Journal of Applied Bacteriology, 81, 1996, s. 565 - 570. DOI: https://doi.org/10.1111/j.1365-2672.1996.tb03548.x

Champagne, C.P. – Gagnon, D. – St-Gelais, D. – Vuillemard, J.C.: Interactions between Lactococcus lactis and Streptococcus thermophilus strains in Cheddar cheese processing conditions. International Dairy Journal, 19, 2009, s. 669 - 674. DOI: https://doi.org/10.1016/j.idairyj.2009.06.002

Charlier, C. – Even, S. – Gautier, M. – Le Loir, Y.: Acidification is not involved in the early inhibition of Staphylococcus aureus growth by Lactococcus lactis in milk. International Dairy Journal, 18, 2008, s. 197 - 203. DOI: https://doi.org/10.1016/j.idairyj.2007.03.015

Chaves, A.C – Fernandez, M. – Lerayer, A.L. – Mierau, I. – Kleerebezem, M. – Hugenholtz, J.: Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Applied and Environmental Microbiology, 68, 2002, s. 5656 - 5662. DOI: https://doi.org/10.1128/AEM.68.11.5656-5662.2002

Iyer, R. – Tomar, S.K. – Maheswari, T.U. – Singh, R.: Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. International Dairy Journal, 20, 2010, s. 133 - 141. DOI: https://doi.org/10.1016/j.idairyj.2009.10.005

Jeanson, S. – Hilgert, N. – Coquillard, M.-O. – Seukpanya, C. – Faiveley, M. – Neveu, P. – Abraham, Ch. – Georgescu, V. – Fourcassié, P. – Beuvier, E.: Milk acidification by Lactococcus lactis is improved by decreasing the level of dissolved oxygen rather than decreasing redox potential in the milk prior to inoculation. International Journal of Food Microbiology, 131, 2009, s. 75 - 81. DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.09.020

Jin, L.Z. – Ho, Y.W. – Abdullah, N. – Jalaludin, S.: Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Letters in Applied Microbiology, 27, 1998, s. 183 - 185. DOI: https://doi.org/10.1046/j.1472-765X.1998.00405.x

Juillard, V. – La Bars, D. – Kunji, E.R.S. – Konings, W.N. – Richard, J.: Oligopeptides are the main source of nitrogen for Lactococcus lactis growth in milk. Applied and Enviromental Microbiology, 61, 1995, s. 3024 -3010. DOI: https://doi.org/10.1128/aem.61.8.3024-3030.1995

Khedid, K. – Faid, M. – Mokhtari, A. – Soulaymani, A. – Zinedine, A.: Chracterization of lactic acid bacteria isolated from the one humped camel milk produced in Morocco. Microbiological Research, 164, 2009, s. 81 - 91. DOI: https://doi.org/10.1016/j.micres.2006.10.008

Kimoto, H. – Nomura, M. – Kobayashi, M. – Mizumachi, K. – Okamoto, T.: Survival of lactococci during passage through mouse digestive tract. Canadian Journal of Microbiology, 49, 2003, s. 707 - 711. DOI: https://doi.org/10.1139/w03-092

Kimoto-Nira, H. – Kobayashi, M. – Nomura, M. – Sasaki, K. – Suzuki, C.: Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media. International Journal of Food Microbiology, 131, 2009, s. 183 - 188. DOI: https://doi.org/10.1016/j.ijfoodmicro.2009.02.021

Kimoto-Nira, H. – Suzuki, Ch. – Sasaki, K. – Kobayashi, M. – Mizumachi, K.: Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract. International Journal of Food Microbiology, 143, 2010, s. 226 - 229. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.07.033

Klijn, N. – Weerkamp, A.H. – de Vos, W.M.: Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Applied and Environmental Microbiology, 61, 1995, s. 2771 - 2774. DOI: https://doi.org/10.1128/aem.61.7.2771-2774.1995

Kološta, M.: Vplyv faktorov prvovýroby na vhodnosť mlieka na výrobu syrov, Mliekarstvo, 29 (3), 1998. s. 21 - 24.

Krizkova, L. – Zitnanova, I. – Mislovicova, D. – Masarova, J. – Sasinkova, V. – Durackova, Z.: Antioxidant and antimutagenic activity of mannan neoglycoconjugates: Mannan-human serum albumin and mannan-penicillin G acylase. Mutation Research, 606 (1-2), 2006, s. 72 - 79. DOI: https://doi.org/10.1016/j.mrgentox.2006.03.003

Kunji, E.R.S. – Mierau, I. – Hagting, A. – Poolman, B. – Konings, W.N.: The proteolytic system of lactic acid bacteria. Antonie van Leeuwenhoek, 70, 1996, s. 187 - 221. DOI: https://doi.org/10.1007/BF00395933

Landete, J.M. – Ferrer, S. – Pardo, I.: Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control, 18, 2007, s. 1569 - 1574. DOI: https://doi.org/10.1016/j.foodcont.2006.12.008

Laws, A.P. – Gu, Y. – Marshall, V.M.: Biosynthesis, characterization and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnology Advances, 19, 2001, s. 597 - 625. DOI: https://doi.org/10.1016/S0734-9750(01)00084-2

Lee, D.A. – Collins, E.B.: Influence of temperature on growth of Streptococcus cremoris a Streptococcus lactis. Journal of Dairy Science, 59, 1976, s. 405 - 409. DOI: https://doi.org/10.3168/jds.S0022-0302(76)84220-8

Lee, H.J. – Joo, Y.L. – Park, C.H. – Kim, S.H. – Hwang, I. – Ahn, J.G.: Purification and characterization of a bacteriocin produced by L. lactis subsp. lactis H559 isolated from kimchi. Journal of Bioscience and Bioengineering, 88, 1999, s. 153 - 159. DOI: https://doi.org/10.1016/S1389-1723(99)80194-7

Levy, S.B. – Marshall, B.: Antibacterial resistance world wide: causes, challenges and responses. Nature Medicine, 10, 2004, s. 122-129. DOI: https://doi.org/10.1038/nm1145

Macedo, M.G. – Lacroix, C. – Gardner, N.J. – Champagne, C.P.: Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. International Dairy Journal, 12, 2002, s. 419 - 426. DOI: https://doi.org/10.1016/S0958-6946(01)00173-X

McCue, P. – Shetty, K.: A biochemical analysis of mungbean (Vigna radiata) response to microbial polysaccharides and potential phenolic-enhancing effects for nutraceutical applications. Food Biotechnology, 16 (1), 2002, s. 57 - 79. DOI: https://doi.org/10.1081/FBT-120004201

Normark, B.H. – Normark, S.: Evolution and spread of antibiotic resistance. Journal of Internal Medicine, 252, 2002, s. 91 - 106. DOI: https://doi.org/10.1046/j.1365-2796.2002.01026.x

Pan, D. – Mei, X.: Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydrate polymers, 80, 2010, s. 908 - 914. DOI: https://doi.org/10.1016/j.carbpol.2010.01.005

Perrin, S. – Gill, J.P. – Schneider, F.: Effects of fructooligosaccharides and their monomeric components on bile salt resistance in three species of bifidobacteria. Journal of Applied Microbiology, 88, 2000, s. 968 - 974. DOI: https://doi.org/10.1046/j.1365-2672.2000.01070.x

Picon, A. – García-Casado, M.A. – Nuñez, M.: Proteolytic activities, peptide utilization and oligopeptide transport systems of wild Lactococcus lactis strains. International Dairy Journal, 20, 2010, s. 156-162. DOI: https://doi.org/10.1016/j.idairyj.2009.10.002

Reddy, G. – Altaf, Md. – Naveena, B.J –. Venkateshwar, M – Kumar, E.V.: Amylolytic bacterial lactic acid fermentacion – A review. Biotechnology Advances, 26, 2008, s. 22 - 34. DOI: https://doi.org/10.1016/j.biotechadv.2007.07.004

Rodrigues, L.R. – Teixeira, J.A. – van der Mei, H.C. – Oliveira, R.: Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids and Surfaces B: Biointerfaces, 49, 2006, s. 79 - 86. DOI: https://doi.org/10.1016/j.colsurfb.2006.03.003

Rodrigues, L.R. – van der Mei, H.C. – Teixeira, J.A. – Oliveira, R.: Influence of Biosurfactants from Probiotic Bacteria on Formation of Biofilms on Voice Prostheses. Applied Microbiology and Biotechnology, 70, 2004, s. 4408 - 4410. DOI: https://doi.org/10.1128/AEM.70.7.4408-4410.2004

Rodrigues, L.R. – van der Mei, H.C. – Teixeira, J.A. – Oliveira, R.: Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Applied Microbiology and Biotechnology, 66, 2004, s. 306 - 311. DOI: https://doi.org/10.1007/s00253-004-1674-7

Rohwer, F. – Edwards, R.: The phage proteomic tree: a genome-based taxonomy for phage. Journal of Bacteriology, 184, 2002, s. 4529 - 4535. DOI: https://doi.org/10.1128/JB.184.16.4529-4535.2002

Ruas-Madiedo, P. – Tuinier, R. – Kanning, M. – Zoon, P.: Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. International Dairy Journal, 12, 2002, s. 689 - 695. DOI: https://doi.org/10.1016/S0958-6946(01)00161-3

Salminem, S. – von Wright, A. – Morelli, L. – Marteau, P. – Brassart, D. – de Vos, W.M. – Fondén, R. – Saxelin, M. – Collins, K. – Mogensen, G. – Birkeland, S.E. – Mattila-Sandholm, T.: Demonstration of safety of probiotics – a review. International Journal of Food Microbiology, 44, 1998, s. 93 - 106.

Santos, W.C. – Souza, M.R. – Cerqueira, M.M.O. P. – Gloria, M.B.A.: Bioactive amine formation in milk by Lactococcus in the presence or not of rennet andNaCl at 20 and 32 °C. Food Chemistry, 81, 2003, s. 595 - 606. DOI: https://doi.org/10.1016/S0308-8146(02)00502-2

Schleifer, K.H. – Kraus, J. – Dvorak, C. – Killper-Bälz,R. – Collins, M.D. – Fischer, W.: Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Systematic and Applied Microbiology, 6, 1985, s. 183 - 195. DOI: https://doi.org/10.1016/S0723-2020(85)80052-7

Sirén, N. – Salonen, K. – Leisola, M. – Nyyssölä, A. : A new salt inducible expression system for Lactococcus lactis. Biochemical Engineering Journal, 2009, s. 132 - 135. DOI: https://doi.org/10.1016/j.bej.2009.08.003

Smit, G. – Smit, B.A. – Engels, W.J.M.: Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews, 29, 2005, s. 591 - 610. DOI: https://doi.org/10.1016/j.fmrre.2005.04.002

Stokes, D. – Ross, R.P. – Fitzgerald, G.F. – Coffey, A.: Application of Streptococcus thermophilus DPC1842 as a adjunct to counteract bacteriophage disruption in a predominantly lactococcal Cheddar cheese starter: use in bulk starter culture systems. Lait, 81, 2001, s. 327 - 334. DOI: https://doi.org/10.1051/lait:2001107

Technical guidance: Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. The EFSA Journal, 2008 (732), s. 1. 1 - 15.

Temmerman, R. – Pot, B. – Huys, G. – Swings, J.: Identification and antibiotic susceptibility of bacterial isolates from probiotic products. International Journal of Food Microbiology, 81, 2002, s. 1 - 10. DOI: https://doi.org/10.1016/S0168-1605(02)00162-9

Vasiljevic, T. – Shah, N.P.: Probiotics – From Metchnikoff to bioactives. International Dairy Journal, 18, 2008, s. 714 - 728. DOI: https://doi.org/10.1016/j.idairyj.2008.03.004

Vouloumanou, E.K. – Makris, G.C. – Karageorgopoulos, D.E. – Falagas, M.E.: Probiotics for the prevention of respiratory tract infections: a systematic review. International Journal of Antimicrobial Agents, 34, 2009, s. 197.e1 – 197e.10. DOI: https://doi.org/10.1016/j.ijantimicag.2008.11.005

Wegener, H.C.: Antibiotics in animal feed and their role in resistance development. Current Opinion in Microbiology, 6, 2003, s. 439 - 445. DOI: https://doi.org/10.1016/j.mib.2003.09.009

Wouters, J.T.M. – Ayad, E.H.E. – Hugenholtz, J. – Smit, G.: Microbes from raw milk for fermented dairy products. International Dairy Journal, 12, 2002, s. 91 - 109. DOI: https://doi.org/10.1016/S0958-6946(01)00151-0

Wu, M.H. - Pan, T.M. - Wu, Y.J. - Chang, S.J. - Chang, M.S. - Hu, CH.Y.: Exopolysaccharide activities from probiotic bifidobacterium: Immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. International Journal of Food Microbiology, 144, 2010, s. 104 - 110. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.09.003

Downloads

Published

2012-01-21

How to Cite

Mati, M. ., & Staruch, L. . (2012). Monitoring of a gluten content in selected meat products from three biggest meat producers in Slovakia. Potravinarstvo Slovak Journal of Food Sciences, 6(1), 30–33. https://doi.org/10.5219/167