The inhibition of wine microorganisms by silver nanoparticles
DOI:
https://doi.org/10.5219/1604Keywords:
acetic acid bacteria, lactic acid bacteria, inhibition, silver particles, green synthesisAbstract
The presented work aimed to study the inhibition using nanoparticles produced by the green synthesis in selected acetic acid and lactic acid bacteria, which are related to viticulture. The degree of ability to eliminate silver particles produced by green syntheses was determined using the plate method on Petri dishes. This is done using two different approaches - the method of direct application of the solution to the surface of the inoculated medium (determination of inhibition zones) and the method of application using nanoparticles to the inoculated medium. Gluconobacter oxydans (CCM 3618) and Acetobacter aceti (CCM 3620T) were studied from acet acetic bacteria. The lactic acid bacteria were Lactobacillus brevis (CCM 1815) and Pediococcus damnosus (CCM 2465). The application of silver nanoparticles was always in concentrations of 0, 0.0625, 0.125, 0.25, 0.5, and 1 g.L-1. All applied concentrations of silver nanoparticles showed an inhibitory effect on the monitored microorganisms. Silver particles could be used in wine technology for their antibacterial effects, mainly to inhibit microorganisms during vinification, as a substitute for sulfur dioxide.
Downloads
Metrics
References
Devi, J. S., Bhimba, V. 2014. Antimicrobial potential of silver nanoparticles synthesized using Ulva reticulata. Asian Journal of Pharmaceutical and Clinical Research, vol. 7, no. 2, p. 82-85.
Ebelashvili, N., Shubladze, L., Saila, E., Gagelidze, N., Bibiluri, N. 2014. Effect of nanostructured silver on biologically active substances and microbiological processes of dry red wine. Bulletin of the Georgian National Academy of Sciences, vol. 8, no. 1, p. 94-101.
El-Fadly, E. G., Hassan, N. H., Mehanna, N. M., Saleh, Th. M. 2016. A potential effect of silver nanoparticles(Ag-NPs) on some lactic acid bacteria growth. Journal of Sustainable Agricultural Sciences, vol. 42, no. 3, p. 121-130. https://doi.org/10.21608/jsas.2016.2938 DOI: https://doi.org/10.21608/jsas.2016.2938
El-Rafie, M. H., Mohamed, A. A., Shaheen, Th. I., Hebeish, A. 2010. Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydrate Polymers, vol. 80, no. 3, p. 779-782. https://doi.org/10.1016/j.carbpol.2009.12.028 DOI: https://doi.org/10.1016/j.carbpol.2009.12.028
Espinosa-Cristóbal, L., Martínez-Castañón, G. A., Martínez-Martínez, R. E., Loyola-Rodréguez, J. P., Patiño-Marín, N., Reyes-Macías, J. F., Ruiz, F. 2009. Antibacterial effect of silver nanoparticles against Streptococcus mutans. Materials Letters, vol. 63, no. 29, p. 2603-2606. https://doi.org/10.1016/j.matlet.2009.09.018 DOI: https://doi.org/10.1016/j.matlet.2009.09.018
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., Kim, J. O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., vol. 52, no. 4, p. 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4%3C662::AID-JBM10%3E3.0.CO;2-3 DOI: https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
Forough, M., Farhadi, K. 2010. Biological and green synthesis of silver nanoparticles. Turkish J. Eng. Env. Sci, vol. 34 p. 281-287. https://doi.org/10.1021/scimeetings.0c03246 DOI: https://doi.org/10.1021/scimeetings.0c03246
García-Ruíz, A., Crespo, J., López-de-Luzuriaga, J. M., Olmos, M. E., Monge, M. P., Rodrígez-Álfaro, M. P., Martín-Álvarez, P. J., Bartolome, B., Moreno-Arribas, M. V. 2015. Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines. Food Control, vol. 50, p. 613-619. https://doi.org/10.1016/j.foodcont.2014.09.035 DOI: https://doi.org/10.1016/j.foodcont.2014.09.035
Garde-Cerdán, T., López, R., Garijo, P., González-Arenzana, L., Gutiérrez, A. R., López-Alfaro, I., Santamaría, P. 2014. Application of colloidal silver versus sulfur dioxide during vinification and storage of Tempranillo red wines. Australian Journal of Grape and Wine Research, vol. 20, no. 1, p. 51-61. https://doi.org/10.1111/ajgw.12050 DOI: https://doi.org/10.1111/ajgw.12050
Gil-Sánchez, I., Monge, M., Bernáldez, A., Tamargo, A., Cueva, C., Llano, D. C., Bartolomé, B., Moreno-Arribas, M. V. 2016. New challenges in the application of biocompatible silver nanoparticles in enology: Antimicrobial capacity, digestibility and potential cytotoxicity. BIO Web of Conferences, vol. 7, no. 1, p. 51-61. https://doi.org/10.1051/bioconf/20160702028 DOI: https://doi.org/10.1051/bioconf/20160702028
Izquierdo-Cañas, P. M., García-Romero, E., Huertas-Nebreda, B., Gómez-Alonso, S. 2012. Colloidal silver complex as an alternative to sulphur dioxide in winemaking. Food Control, vol. 23, p. 73-81. https://doi.org/10.1016/j.foodcont.2011.06.014 DOI: https://doi.org/10.1016/j.foodcont.2011.06.014
Moreno-Arribas, M. V., Sualdea, B. B. 2016. Wine Safety, Consumer Preference, and Human Health. New York, USA : Springer Science+Business Media, 329 p. ISBN 978-3-319-24514-0. https://doi.org/10.1007/978-3-319-24514-0 DOI: https://doi.org/10.1007/978-3-319-24514-0
Panyala, R. N., Peña-Méndez, M. E., Havel, J. 2008. Silver or silver nanoparticles: a hazardous threat to the environment and human health? Journal of Applied Biomedicine, vol. 6, no. 3, p. 117-129. https://doi.org/10.32725/jab.2008.015 DOI: https://doi.org/10.32725/jab.2008.015
Parashar, U. K., Saxena, P., Srivastava, A. 2009. Bioinspired synthesis of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures, vol. 4, p. 159-166.
Shoo-Hwan, K., Hyeong-Seon, L., Deaok-Seon, R., Soo-Jae, C., Dong-Seok, L. 2011. Antibacterial Activity of Silver-nanoparticles against Staphylococcus aureus. Korean Journal of Microbiology and Biotechnology vol. 39, no. 1, p. 77-85.
Večeřová, R. 2016. Koloidní stříbro a jeho biologická aktivita. Klinická farmakologie a farmacie, vol. 30, no. 3, p. 18-20. https://doi.org/10.36290/far.2016.024 DOI: https://doi.org/10.36290/far.2016.024
Yoon, K. Y., Beyon, J. H., Park, C. W., Hwang, J. 2008. Antimicrobial Effect of Silver Particles on Bacterial Contamination of Activated Carbon Fibers. Environmental Science & Technology, vol. 42, no. 4, p. 1251-1255. https://doi.org/10.1021/es0720199 DOI: https://doi.org/10.1021/es0720199
Zarei, M., Jamnejad, A., Khajehali, E. 2014. Antibacterial Effect of Silver Nanoparticles Against Four Foodborne Pathogens. Jundishapur journal of microbiology, vol. 7, no. 1, p. e8720. https://doi.org/10.5812/jjm.8720 DOI: https://doi.org/10.5812/jjm.8720
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.