Methods for determining the botanical origin of honey
DOI:
https://doi.org/10.5219/1386Keywords:
acacia honey, evaluation, method, NMR spectrometryAbstract
The demand for monofloral, original, and special (functional) kinds of honey, or those with geographical indication, is forecast. At the same time, there is a need to improve the methods for determining the botanical and geographical origin of honey. The purpose of the research was to select and apply a variety of techniques for identifying the botanical origin of honey for its correspondence to acacia species. Samples of honey from the Kyiv, Odesa, and Dnipro regions extracted in the spring and summer period were used in the research. Organoleptic, physicochemical, NMR spectrometry, and advanced melissopalynology methods were applied. The tests were carried out at the laboratories of the Department of Certification and Standardization of Agricultural Products, NULES, Ukraine; the Ukrainian Laboratory of Quality and Safety of Agricultural Products; and the Bruker BioSpin GmbH company (Germany). According to the research results, the requirements for acacia honey were met by the organoleptic method for samples B1 and B2; by the physicochemical method for A0 and A2; by NMR spectroscopy for not a single sample, all being assessed as polyfloral; and by pollen analysis for B1 and B2. The conducted studies confirm the need for a comprehensive approach to the identification of the botanical origin of honey for its conformity to acacia species. There is a need to review the physicochemical indicators for the compliance of honey with the acacia species obtained in Ukraine. After all, even the modern NMR spectrometry technique indicated that the specially fabricated sample that did not contain acacia pollen grains was acacia honey. Identification of the botanical origin of monofloral honey, in particular acacia, should be carried out in the following sequence: pollen analysis (by dominant pollen grains), safety (presence of antibiotics, pesticides), physicochemical parameters according to international requirements, organoleptic parameters.
Downloads
Metrics
References
Adamchuk, L. O., Suсhenko, V. Y., Akulonok, I. 2019. Fermentatyvna aktyvnist akatsiievoho medu (Enzymatic activity of acacia honey). Novitni Tekhnolohii (New Technologies), vol. 3, no. 10, p. 52-61. https://doi.org/10.31180/2524-0102/2019.3.10.06
Ampuero, S., Bogdanov, S., Bosset, J. O. 2004. Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, vol. 218, no. 2, p. 198-207. https://doi.org/10.1007/s00217-003-0834-9 DOI: https://doi.org/10.1007/s00217-003-0834-9
Ballabio, D., Robotti, E., Grisoni, F., Quasso, F., Bobba, M., Vercelli, S., Gosetti, F., Calabrese, G., Sangiorgi, E., Orlandi, M., Marengo, E. 2018. Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey. Food Chemistry, vol. 266, no. 15, p. 79-89. https://doi.org/10.1016/j.foodchem.2018.05.084 DOI: https://doi.org/10.1016/j.foodchem.2018.05.084
Brindza, J., Motyleva, S., Ostrovský, R., Grygorieva, O., Adamchuk, L., Horčinova Sedlačková, V., Juríková, T., Fatrcová-Šramková, K., Shwaryová, M., Brovaskyi, V., Velychko, S., Tkachenko, O. 2018. Peľ a včelie peľové obnôžky z niektorých druhov rastlín (Pollen and bee pollen same plant species). Nitra : SPU v Nitre, 147 p. ISBN 978-80-552-1862-5 (In Slovak).
Bruker, 2020. High-performance scientific instruments and analytical and diagnostic solutions to explore life and materials at molecular level. Available at: https://www.bruker.com/ru.html.
Carreck, N. L. 2018. Special issue: honey. Journal of Apicultural Research, vol. 57, p. 1-4. https://doi.org/10.1080/00218839.2017.1412565 DOI: https://doi.org/10.1080/00218839.2017.1412565
Chekryga, G. P., Niczievskaya, K. N., Borodaj, E. V. 2019. A new method for determining the botanical origin of honey (Новый метод определения ботанического происхождения меда). Advances in Science and Technology AIC (Достижения науки и техники АПК), vol. 33, no. 10, p. 90-92. https://doi.org/10.24411/0235-2451-2019-11020 (In Russian)
Corvucci, F., Nobili, L., Melucci, D., Grillenzoni, F.-V. 2015. The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chemistry, vol. 169, no. 15, p. 297-304. https://doi.org/10.1016/j.foodchem.2014.07.122 DOI: https://doi.org/10.1016/j.foodchem.2014.07.122
Cozzolino, D., Corbella, E., Smyth, H. 2011. Quality control of honey using infrared spectroscopy: a review. Applied Spectroscopy Reviews, vol. 46, no. 7, p. 523-538. https://doi.org/10.1080/05704928.2011.587857 DOI: https://doi.org/10.1080/05704928.2011.587857
del Campo, G., Zuriarrain, J., Zuriarrain, A., Berregi, I. 2016. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by 1H NMR. Food Chemistry, vol. 196, р. 1031-1039. https://doi.org/10.1016/j.foodchem.2015.10.036 DOI: https://doi.org/10.1016/j.foodchem.2015.10.036
Dinca, O. R., Ionete, R. E., Popescu, R., Costinel, D., Radu G. L. 2015. Geographical and botanical origin discrimination of Romanian honey using complex stable isotope data and chemometrics. Food Analytical Methods, vol. 8, no. 2, p. 401-412. https://doi.org/10.1007/s12161-014-9903-x DOI: https://doi.org/10.1007/s12161-014-9903-x
DSTU 4497:2005. 2007. Natural honey. Technical requirements. (Med naturalnyi. Tekhnichni umovy). National Standards of Ukraine (Derzhavni standarty Ukrainy). (In Ukrainian).
Etzold, E., Lichtenberg-Kraag, B. 2008. Determination of the botanical origin of honey by Fourier-transformed infrared spectroscopy: an approach for routine analysis. European Food Research and Technology, vol. 227, no. 2, p. 579-586. https://doi.org/10.1007/s00217-007-0759-9 DOI: https://doi.org/10.1007/s00217-007-0759-9
Gan, Z., Yang, Y., Li, J., Wen, X., Zhu, M., Jiang, Y., Ni, Y. 2016. Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. Journal of Food Engineering, vol. 178, p. 151-158. https://doi.org/10.1016/j.jfoodeng.2016.01.016 DOI: https://doi.org/10.1016/j.jfoodeng.2016.01.016
Gerhardt, N., Birkenmeier, M., Schwolow, S., Rohn, S., Weller, P. 2018. Volatile-compound fingerprinting by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey. Analytical Chemistry, vol. 90, no. 3, p. 1777-1785. https://doi.org/10.1021/acs.analchem.7b03748 DOI: https://doi.org/10.1021/acs.analchem.7b03748
Global Industry Analysts Inc. USA. 2016. Honey: a global strategic business report. San Jose, CA : Global Industry Analysts Inc. Available at: http://www.strategyr.com/MarketResearch/Honey_Market_Trends.asp).
Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., Severcan, F. 2015. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chemistry, vol. 170, no. 1, p. 234-240. https://doi.org/10.1016/j.foodchem.2014.08.040 DOI: https://doi.org/10.1016/j.foodchem.2014.08.040
Hong, E. J., Park, S. J., Lee, H. J., Lee, K. G., Noh, B. S. 2011. Analysis of various honeys from different sources using electronic nose. Korean Journal for Food Science of Animal Resources, vol. 31, no. 2, p. 273-279. https://doi.org/10.5851/kosfa.2011.31.2.273 DOI: https://doi.org/10.5851/kosfa.2011.31.2.273
Huang, L., Liu, H., Zhang, B., Di, W. 2015. Application of electronic nose with multivariate analysis and sensor selection for botanical origin identification and quality determination of honey. Food and Bioprocess Technology, vol. 8, p. 359-370. https://doi.org/10.1007/s11947-014-1407-6 DOI: https://doi.org/10.1007/s11947-014-1407-6
Ivanišová, E., Kačániová, M., Frančáková, H., Petrová, J., Hutková, J., Brovarskyi, V., Velychko, S., Adamchuk, L., Schubertová, Z., Musilová, J. 2015. Bee bread-perspective source of bioactive compounds for future. Potravinarstvo Slovak Journal of Food Sciences, vol. 9, no. 1, р. 592-598. https://doi.org/10.5219/558 DOI: https://doi.org/10.5219/558
Lenhardt, L., Bro, R., Zeković, I., Dramićanin, T., Dramićanin, M. D. 2015. Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. Food Chemistry, vol. 175, no. 15, p. 284-291. https://doi.org/10.1016/j.foodchem.2014.11.162 DOI: https://doi.org/10.1016/j.foodchem.2014.11.162
Machado De-Melo, A. A., Bicudo de Almeida-Muradian, L., Sancho, T. M., Pascual-Maté, A. 2018. Composition and properties of Apis mellifera honey: a review. Journal of Apicultural Research, vol. 57. p. 5-37. https://doi.org/10.1080/00218839.2017.1338444 DOI: https://doi.org/10.1080/00218839.2017.1338444
Maione, C., Barbosa, F., Jr., Barbosa, R. M. 2019. Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: a review. Computers and Electronics in Agriculture, vol. 157, p. 436-446. https://doi.org/10.1016/j.compag.2019.01.020 DOI: https://doi.org/10.1016/j.compag.2019.01.020
Marghitas, L. A., Dezmirean, D. S., Pocol, C. B., Marioara, I. L. E. A., Bobis, O., Gergen, I. 2010. The development of a biochemical profile of acacia honey by identifying biochemical determinants of its quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 38, no. 2, p. 84-90. https://doi.org/10.15835/nbha3824780
Nakaz MinAPK No. 330, 2019. On approval of the requirements for honey: Order of Ministry of Agrarian Policy and Food of Ukraine (Pro zatverdzhennia Vymoh do medu: Nakaz Ministerstva ahrarnoi polityky ta prodovolstva Ukrainy). Available at: https://zakon.rada.gov.ua/laws/show/z0725-19. (In Ukrainian)
Oddo, L. P., Piro, R., Bruneau, É., Guyot-Declerck, C., Ivanov, T., Piskulová, J., Flamini, C., Lheritier, J., Morlot, M., Russmann, H., Von Der Ohe, W., Von Der Ohe, K., Gotsiou, P., Karabournioti, S., Kefalas, P., Passaloglou-Katrali, M., Thrasyvoulou, A., Tsigouri, A., Marcazzan, G. L., Piana, M. L., Piazza, M. G., Sabatini, A. G., Kerkvliet, J., Godinho, J., Bentabol, A., Valbuena, A. O., Bogdanov, S., Ruoff, K. 2004. Main European unifloral honeys: descriptive sheets. Apidologie, vol. 35, suppl. 1, p. 38-81. https://doi.org/10.1051/apido:2004049 DOI: https://doi.org/10.1051/apido:2004049
Pascual-Maté, A., Osés, S. M., Fernández-Muiño, M. A., Sancho, M. T. 2018. Methods of analysis of honey. Journal of Apicultural Research, vol. 57, p. 38-74. https://doi.org/10.1080/00218839.2017.1411178 DOI: https://doi.org/10.1080/00218839.2017.1411178
Peng Kek, S., Ling Chin, N., Yusof, Y. A., Wei, Tan, S., Suan Chua, L. 2017. Classification of entomological origin of honey based on its physicochemical and antioxidant properties. International Journal of Food Properties, vol. 20, p. 2723-2738. https://doi.org/10.1080/10942912.2017.1359185 DOI: https://doi.org/10.1080/10942912.2017.1359185
SAS, 2009. Users guide version 9.2. Cary, NC, USA : SAS/STAT (r)SAS Institute Inc.
Schievano, E., Sbrizza, M., Zuccato, V., Piana, L., Tessari, M. 2020. NMR carbohydrate profile in tracing acacia honey authenticity. Food Chemistry, vol. 309, 125788. https://doi.org/10.1016/j.foodchem.2019.125788 DOI: https://doi.org/10.1016/j.foodchem.2019.125788
Siddiqui, A. J., Musharraf, S. G., Choudhary, I., Rahman, A. 2017. Application of analytical methods in authentication and adulteration of honey. Food Chemistry, vol. 217, no. 15, p. 687-698. https://doi.org/10.1016/j.foodchem.2016.09.001 DOI: https://doi.org/10.1016/j.foodchem.2016.09.001
Soares, S., Amaral, J. S., Oliveira, M. B., Mafra, I. 2015. Improving DNA isolation from honey for the botanical origin identification. Food Control, vol. 48. p. 130-136. https://doi.org/10.1016/j.foodcont.2014.02.035 DOI: https://doi.org/10.1016/j.foodcont.2014.02.035
Son, Y. Q., Milne, R. I., Zhou, H. X., Ma, X. L., Fang, J. Y., Zha, H. G. 2019. Floral nectar chitinase is a potential marker for monofloral honey botanical origin authentication: a case study from loquat (Eriobotrya japonica Lindl.). Food Chemistry, vol. 282, no. 1, p. 76-83. https://doi.org/10.1016/j.foodchem.2018.12.107 DOI: https://doi.org/10.1016/j.foodchem.2018.12.107
Spiteri, M., Dubin, E., Cotton, J., Poirel, M., Corman, B., Jamin, E., Lees, М., Rutledge, D. 2016. Data fusion between high resolution 1 H-NMR and mass spectrometry: a synergetic approach to honey botanical origin characterization. Analytical and Bioanalytical Chemistry, vol. 408, no. 16, p. 4389-4401. https://doi.org/10.1007/s00216-016-9538-4 DOI: https://doi.org/10.1007/s00216-016-9538-4
Thrasyvoulou, A., Tananaki, C., Goras, G., Karazafiris, E., Dimou, M., Liolios, V., Kanelis, D., Gounari, S. 2018. Legislation of honey criteria and standards. Journal of Apicultural Research, vol. 57, p. 88-96. https://doi.org/10.1080/00218839.2017.1411181 DOI: https://doi.org/10.1080/00218839.2017.1411181
Ulloa, P. A., Guerra, R., Cavaco, A. M., Rosa da Costa, A. M., Figueira, A. C., Brigas, A. F. 2013. Determination of the botanical origin of honey by sensor fusion of impedance e-tongue and optical spectroscopy. Computers and Electronics in Agriculture, vol. 94, p. 1-11. https://doi.org/10.1016/j.compag.2013.03.001 DOI: https://doi.org/10.1016/j.compag.2013.03.001
Von Der Ohe, W., Oddo, L. P., Piana, M. L., Morlot, M., Martin, P. 2004. Harmonized methods of melissopalynology. Apidologie, vol. 35, suppl. 1, p. 18-25. https://doi.org/10.1051/apido:2004050 DOI: https://doi.org/10.1051/apido:2004050
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.