Risk of contamination of wild berries from upper Orava region by cadmium


  • Stanislav Zupka Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Alena Vollmannová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Ľuboš Harangozo Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Marek Slávik Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Michal Medvecký Krivá 62, 02755 Krivá




Upper Orava, heavy metals, cadmium, soil, wild berries, leaves


The upper Orava region is located at the North Slovakia, near of potential sources of environmental contamination due by mining of coal, zinc and lead ores. The aim of the study was to evaluate the risk of consumption of wild forest fruit from Upper Orava region from the aspect of cadmium content. Ten sampling points were found by random search. From these points samples of soil, leaves and fruits of wild berries (9 samples of blueberries Vaccinium Myrtillus and 1 sample of strawberries Fragaria Vesca) were collected. In soil samples the active soil reaction (pH/H2O) ranged from 3.53 (strong acidity) to 4.56 (extremly strong acidity), and the determined percentage of humus ranged from 1.66 (low humic soil) to 4.90 (high humic soil).  In two soil samples the total content of cadmium determinated in soil extracts by aqua regia exceeded limit 0.70 mg.kg-1 given by the legislation in tne Slovak Republic. In three soil samples the determined content of cadmium mobile forms determined in soil extracts by NH4NO3 exceeded the limit 0.10 mg.kg-1. The content of Cd determined in leaves as well as in fruits was evaluated according to Food Codex of the Slovak Republic. Only in one sample of leaf samples the limit 1.00 mg.kg-1 was exceeded. The other leaf samples are safely when used as an ingredient in tea mixtures. On the other hand even in 7 fruit samples the limit 0.05 mg.kg-1 was exceeded. This fruit can pose a risk for the human organism when is directly consumed as well as may negatively affect the human health when is used as raw materials in the food industry. 


Download data is not yet available.


Metrics Loading ...


Barančíková, G. 1998. Návrh účelovej kategorizácie pozemkov v SR z hľadiska citlivosti na znečistenie ťažkými kovmi (Proposal of appropriate categorization of land in the SR in terms of susceptibility to contamination by heavy metals). Rostlinná výroba, vol. 44, no. 3, p. 117-122.

Bernard, A. 2008. Cadmium & its adverse effects on human health. Indian Journal of Medical Research, vol. 128, p. 557-564. PMid:19106447

Bushway, R. J., Mc Gann, D. F., Cook, W. P., Bushway, A. A. 2006. Mineral and vitamin content of lowbush blueberries (Vaccinium angustifolium Ait.). Journal of Food Science, vol. 48, no. 6, p. 1878. https://doi.org/10.1111/j.1365-2621.1983.tb05109.x DOI: https://doi.org/10.1111/j.1365-2621.1983.tb05109.x

Buszewski, B., Jastrzębska, A., Kowalkowski, T., Górna-Binkul, A. 2000. Monitoring of Selected Heavy Metals Uptake by Plants and Soils in the Area of Toruń, Poland. Polish Journal of Environmental Studies, vol. 9, p. 511-515.

Chojnacka, K., Chojnacki, A., Gorecka, H. 2005. Bioavailability of potentially toxic metals from polluted soils to plants. Science of the Total Environment, vol. 337, no. 1-3, p. 175-182. https://doi.org/10.1016/j.scitotenv.2004.06.009 DOI: https://doi.org/10.1016/j.scitotenv.2004.06.009

Commission Regulation (EC) No. 1881/2006, 19. December 2006, that define maximum of levels for certain contaminants in foodstuffs. OJ L 314M , 1.12.2007, p. 558-577.

Fanrong, Z., Shafagat, A., Haitao, Z., Younan, O., Boyin, Q., Feibo, W., Gouping, Z. 2011 The influence of pH and organic mater content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, vol. 159, no. 1, p. 84-91. https://doi.org/10.1016/j.envpol.2010.09.019 DOI: https://doi.org/10.1016/j.envpol.2010.09.019

Foodstuffs Code of the Slovak Republic, Annex. 1 of the X. Head, from Second part. Contaminants in foodstuffs, Part A Chemical substances. Decree of the Ministry of Agriculture of the Slovak Republic No.: 18558/2006-SL. Available at: http://www.svps.sk/dokumenty/legislativa/18558_2006.pdf

Giovanelli, G., Buratti, S. 2009. Comparison of polyphenolic composition and antioxidant activity of wild Italian bluberries and some cultivated varieties. Food Chemistry, vol. 112, p. 903-908. https://doi.org/10.1016/j.foodchem.2008.06.066 DOI: https://doi.org/10.1016/j.foodchem.2008.06.066

Godzik, S., Szudzuj, J., Poborski, P. 1993. Environmental pollution in south Poland and effects. Folia Med Cracov. vol. 34, no. 1-4, p. 9-18. PMid:8175068

Guala, D. S., Vega, F. A., Covelo, E. F. 2010. The dynamics of heavy metals in plant-soil interactions. Ecological Modelling, vol. 221, p. 1148-1152. https://doi.org/10.1016/j.ecolmodel.2010.01.003 DOI: https://doi.org/10.1016/j.ecolmodel.2010.01.003

Häkkinen, S., Heinonen, M., Kärenlampi, S., Mykkänen, H., Ruuskanen, J., Törrö, R. 1999. Screening of seleceted flavonoids and phenolic acids in 19 berries. Food Research International, vol. 32, p. 345-353. https://doi.org/10.1016/S0963-9969(99)00095-2 DOI: https://doi.org/10.1016/S0963-9969(99)00095-2

Kawabata, A., Deenik, J., Hamasaki, R., Lichty, J., Nakamoto, S. 2011. Acidification of Volcanic Ash Soils From Maui and Hawai'i Island for Blueberry and Tea Production. Honolulu (HI): University of Hawaii. 7 p. (Soil and Crop Management; AS-5). Available at: http://hdl.handle.net/10125/33267

Krížová, L., Vollmannová, A., Margitánová, E., Árvaj, J., Szabóová, G. 2009. Rizikové kovy v drobnom lesnom ovocí (Risk metals in the small forest fruit). Potravinarstvo, vol. 3, no. 4, p. 43-47.

Maliníková, E., Kukla, J., Kuklová, M., Balážová, M. 2013. Altitudinal variation of plant traits: morphological characteristics in Fragaria vesca L. (Rosaceae). Annals of Forest Research, vol. 56, no. 1, p. 79-89.

Musilova, J., Arvay, J., Vollmannova, A., Toth, T., Tomas, J. 2015. Environmental contamination by heavy metals in region with previous mining activity. In: Proceeding of the 14th International Conference on Environmental Sciences and Technology. Rhodes, Greece, 3-5 September 2015. Available at: http://cest.gnest.org/cest15proceedings/public_html/papers/cest2015_00067_poster_paper.pdf

Nile, S. H., Park, S. W. 2014. Edible berries: bioactive components and their effect on human health. Nutrition, vol. 30, no. 2, p. 134-144. https://doi.org/10.1016/j.nut.2013.04.007 PMid:24012283 DOI: https://doi.org/10.1016/j.nut.2013.04.007

Olayinka K. O., Oyeyiola A. O., Odujebe F. O., Oboh B. 2011. Uptake of potentially toxic metals by vegetable plants grown on contaminated soil and their potential bioavailability using sequential extraction. Journal of Soil Science and Environmental Management, vol. 2, no. 8, p. 220-227.

Prior, R. L., Wu, X. L., Gu, L. W., Hager, T. J., Hager, A., Howard, L. R. 2008. Whole berries versus berry anthocyanins: Interactions with dietary fat levels in the C57BL/6J mouse model of obesity. Journal of Agricultural and Food Chemistry, vol. 56, issue 3, p. 647-653. https://doi.org/10.1021/jf071993o PMid:18211017 DOI: https://doi.org/10.1021/jf071993o

Reimann, C., Koller, F., Frengstad, B., Kashulina, G., Niskavaara, H. Englmaier, P., 2001. Comparison of the element composition in several plant species and their substrate from a 1 500 000 km2 area in Northen Europe. Science of The Total Environment, vol 278, no. 1-3, p. 87-112. https://doi.org/10.1016/s0048-9697(00)00890-1 DOI: https://doi.org/10.1016/S0048-9697(00)00890-1

Römkens, P., Salomons, W. 1998. Cd, Cu AND Zn solubility in arable and forest soils: consequnces of land use changes for metal mobility and risk assessment. Soil science, vol. 163, no. 11, p. 859-871. DOI: https://doi.org/10.1097/00010694-199811000-00003

Slovak decree No. 220/2004 of the coll. as amended. Law on the protection and use of agricultural land. Part: Limit values of the hazardous substances in agricultural soil. Available at: http://www.zakonypreludi.sk/zz/2004-220

Taraškevičius, R., Zinkutė, R., Stakėnienė, R., Radavičius, M. 2013. Case Study of the Relationship between Aqua Regia and Real Total Contents of Harmful Trace Elements in Some European Soils. Journal of Chemistry, vol. 2013, p. 5. https://doi.org/10.1155/2013/678140 DOI: https://doi.org/10.1155/2013/678140

Tomáš, J., Čéry, J., Melicháčová, S., Árvay, J., Lazor, P., 2009. Monitoring of Risky Elements in Zone of Pollution Strážske Area. Czech Journal of Food Sciences, vol. 27, special issue. p. 397-400. DOI: https://doi.org/10.17221/598-CJFS

Vilček J., Hronec O., Tomáš J. 2012. Risk elements in soils of burdened areas of eastern Slovakia. Polish Journal of Environmental Studies, vol. 21, no. 5, p. 1429-1436.

Von Hoffen, L., Säumel, I. 2014. Orchards for edible cities: Cadmium and lead content in nuts, berries, pome and stone fruits harvested within the inner city neighbourhoods in Berlin, Germany. Ecotoxicology and environmental safety, vol. 101, p. 233-239. https://doi.org/10.1016/j.ecoenv.2013.11.023 PMid:24507151 DOI: https://doi.org/10.1016/j.ecoenv.2013.11.023

Wieczorek, J., Petrzak, M., Osowski, A., Wieczorek, Z. 2010. Determination of lead, cadmium, and persistent organic pollutants in wild and orchard-farm-grown fruit in northeastern Poland. Journal of Toxicology, Environment and Health, vol. 73, p. 1236-1243. https://doi.org/10.1080/15287394.2010.492009 PMid:20706949 DOI: https://doi.org/10.1080/15287394.2010.492009

Wopereis, M. C., Gascuel-Odoux, C., Bourrie, G., Soignet, G. 1988. Spatial variability of heavy metals in soil on a one-hectare scale. Soil Science, vol. 146, p. 113-118. https://doi.org/10.1097/00010694-198808000-00009 DOI: https://doi.org/10.1097/00010694-198808000-00009

Xu, D., Chen, Z., Sun, K., Yan, D., Kang, M., Zhao, Y. 2013. Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.). Ecotoxicology and Environmental Safety, vol. 97, p. 147-153. https://doi.org/10.1016/j.ecoenv.2013.07.021 PMid:23938042 DOI: https://doi.org/10.1016/j.ecoenv.2013.07.021

Zaujec, A. et al. 2009. Pedológia a základy geológie, Nitra : Slovak University of Agriculture, Slovakia, ISBN 978-80-552-0207-5.

Zhang, W. L., Du, Y., Zhai, M. M., Shang, Q. 2014. Cadmium exposure and its health effects: A 19-year follow-up study of a polluted area in China. Science of the Total Environment, vol. 470-471, p. 224-228. https://doi.org/10.1016/j.scitotenv.2013.09.070 PMid:24140693 DOI: https://doi.org/10.1016/j.scitotenv.2013.09.070




How to Cite

Zupka, S. ., Vollmannová, A. ., Harangozo, Ľuboš ., Slávik, M. ., & Medvecký, M. . (2016). Risk of contamination of wild berries from upper Orava region by cadmium. Potravinarstvo Slovak Journal of Food Sciences, 10(1), 126–131. https://doi.org/10.5219/546

Most read articles by the same author(s)

1 2 3 4 > >>