Testing of DNA isolation for the identification of hemp


  • Tomáš Vyhnánek Mendel University in Brno, Department of Plant Biology, Zemědělská 1, CZ-61300, Brno, Czech Republic
  • Václav Trojan Mendel University in Brno, Department of Plant Biology, Zemědělská 1, CZ-61300, Brno, Czech Republic
  • Klára Štiasna Mendel University in Brno, Department of Plant Biology, Zemědělská 1, CZ-61300, Brno, Czech Republic
  • Mária Presinszká Mendel University in Brno, Department of Plant Biology, Zemědělská 1, CZ-61300, Brno, Czech Republic
  • Eva Mrkvicová Mendel University in Brno, Faculty of Agronomy, Department of Animal Nutrition and Forage Production, Zemědělská 1, 613 00 Brno, Czech Republic
  • Luděk Hřivna Mendel University in Brno, Faculty of Agronomy, Department of Food Technology, Zemědělská 1, 613 00 Brno, Czech Republic
  • Ladislav Havel Mendel University in Brno, Department of Plant Biology, Zemědělská 1, CZ-61300, Brno, Czech Republic




Cannabis, seed, oilcake, dry flower, DNA isolation


Hemp is diploid organism (2n = 2x = 20, genome size 534 Mb) with nine pairs of autosomes plus XX (♀) or XY (♂) chromosomes. Cannabis sativa L. is an important economic plant for the production of food, fibre, oils, and intoxicants. Genotypes (varieties or chemovar) of hemp with low Δ9-tetrahydrocannabinol content are used for industrial applications. Varieties with high Δ9-tetrahydrocannabinol or high cannabidiol content are used for medicinal applications. Biochemical and molecular methods can be used for identification and classification. An important step for molecular biology methods is to obtain the matrix of the native and sufficiently pure DNA. We tested two different experimental variant of samples (20 mg and 100 mg) of seeds, oilcake and dried flowers for analysis of the Italian variety Carmagnola for analysis (harvested in 2014, Hempoint Ltd., Czech Republic). The DNeasy® Plant Mini Kit (Qiagen, GE) was used to isolate the DNA. The DNA concentration and purity was assessed by agarose electrophoresis and via a spectrophotometer. Samples of lower weight yielded lower values of DNA concentration (average 16.30 - 38.90 ng.µL-1), but with better purity than samples of higher weight (ratio A260nm/A280nm for low-weight samples was near 1.80). To test the applicability of DNA analysis, we used two SSR markers (CAN1347 and CAN2913). PCR products were separated on 1% agarose and on 8% polyacrylamide electrophoresis. DNA samples obtained from samples of higher weight exhibited less PCR amplification than samples of lower weight. We found no effect of sample weight on the formation of non-specific amplification products during the PCR reaction. Based on our results we can be recommended for practical isolation procedure using DNeasy® Plant Mini Kit with lower of sample weight (20 mg). In future work the procedure for DNA isolating from wheat-cannabis products, e. g. breads, rolls or pasta, will be optimized.


Download data is not yet available.


Metrics Loading ...


Alghanim, H. J., Almirall, J. R. 2003. Development of microsatellite markers in Cannabis sativa for DNA typing and genetic relatedness analyses. Analytical and Bioanalytical Chemistry, vol. 376, no. 8, p. 1225-1233. https://doi.org/10.1007/s00216-003-1984-0 DOI: https://doi.org/10.1007/s00216-003-1984-0


Blim, N., Stafford, D. W. 1976. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acid Research, vol. 3, no. 9, p. 2303-2308. https://doi.org/10.1093/nar/3.9.2303 DOI: https://doi.org/10.1093/nar/3.9.2303

Brown, S. M., Hopkins, M. S., Mitchell, S. E., Senior, M. L., Wang, T. Y., Duncan, R. R., Gonzalez-Candelas, F., Kresovich, S. 1996. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench.]. Theoretical and Applied Genetics, vol. 93, no. 1-2, p. 190-198. https://doi.org/10.1007/BF00225745 PMid:24162217 DOI: https://doi.org/10.1007/BF00225745

Collard, B. C. Y., Das, A., Virk, P. S., Mackill, D. J. 2007. Evaluation of ´quick and dirty´ DNA extraction methods for marker-assisted selection in rice (Oryza sativa L.). Plant Breeding, vol. 126, no. 1, p. 47-50. https://doi.org/10.1111/j.1439-0523.2006.01272.x DOI: https://doi.org/10.1111/j.1439-0523.2006.01272.x

Debruyne, D., Albessard, F., Bigot, M. C., Moulin, M. 1994. Comparison of three advanced chromatographic techniques for cannabis identification. Bulletin on Narcotics, vol. 46, no. 1, p. 109-121. PMid:7866395

Debruyne, D., Moulin, M., Bibot, M. C., Camsonne, R. 1981. Identification and differentiation of resinous cannabis and textile cannabis: combined use of HPLC and high-resolution GLC. Bulletin on Narcotics, vol. 33, no. 1, p. 49-58. PMid:6272923

Demeke, T., Jenkins, R. G. 2010. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Analytical and Bioanalytical Chemistry, vol. 396, no., 6, p. 1977-1990. http://link.springer.com/article/10.1007/s00216-009-3150-9 DOI: https://doi.org/10.1007/s00216-009-3150-9

Gao, C., Xin, P., Cheng, C., Tang, Q., Chen, P., Wang, C., Zang, G., Zhao, L. 2014. Diversity analysis in Cannabis sativa based on large-scale development of expressed sequence tag-derived simple sequence repeat markers. PLoS ONE, vol. 9, no. 10, p. e110638. https://doi.org/10.1371/journal.pone.0110638 PMid:25329551 DOI: https://doi.org/10.1371/journal.pone.0110638

Gilmore, S., Peakall, R. 2003. Isolation of microsatellite markers in Canabis sativa L. (marijuana). Molecular Ecology Notes, vol. 3, no. 1, p. 105-107. https://doi.org/10.1046/j.1471-8286.2003.00367.x DOI: https://doi.org/10.1046/j.1471-8286.2003.00367.x

Gregáňová, Ž., Kraic, J., Gálová, Z. 2005. Effectiveness of microsatellites in differentiation of elite wheat cultivars. Biologia, vol. 60, no. 6, p. 665-670.

Hazekamp, A., Fishedick, J. T. 2012. Cannabis - from cultivar to chemovar. Drug Testing and Analysis, vol. 4, no. 7-8, p. 660-667. https://doi.org/10.1002/dta.407 PMid:22362625 DOI: https://doi.org/10.1002/dta.407

Mechoulam, R. 1970. Marijuana chemistry. Science, vol. 168, no. 3936, p. 1159-1166. https://doi.org/10.1126/science.168.3936.1159 PMid:4910003 DOI: https://doi.org/10.1126/science.168.3936.1159

Moeller, J. R., Moehn, N. R., Waller, D. M., Givnish, T. J. 2014. Paramagnetic cellulose DNA isolation improves DNA yield and quality among diverse plant taxa. Applications in Plant Sciences, vol. 2, no. 10. https://doi.org/10.3732/apps.1400048 PMid:25309836 DOI: https://doi.org/10.3732/apps.1400048

Musilová, M., Trojan, V., Vyhnánek, T., Havel, L. 2013. Genetic variability for coloured caryopses in common wheat varieties determined by microsatellite markers. Czech Journal of Genetics and Plant Breeding, vol. 49, no. 3, p. 116-122. DOI: https://doi.org/10.17221/160/2012-CJGPB

Ning, J., Liebich, J., Kästner, M., Zhou, J., Schäffer, A., Burauel, P. 2009. Different influences of DNA purity indices and quantity on PCR-based DGGE and functional gene microarray in soil microbial community study. Applied Microbiology and Biotechnology, vol. 82, no. 5, p. 983-993. https://doi.org/10.1007/s00253-009-1912-0 PMid:19247649 DOI: https://doi.org/10.1007/s00253-009-1912-0

Ovesná, J., Leišová-Svobodová, L., Kučera, L. 2014. Microsatellite analysis indicates the specific genetic basis of Czech bolting garlic. Czech Journal of Genetics and Plant Breeding, vol. 50, no. 3, p. 226-234. Available at: http://www.agriculturejournals.cz/publicFiles/131273.pdf DOI: https://doi.org/10.17221/82/2014-CJGPB

Pitts, J. E., Neal, J. D., Gough, T. A. 1992. Some features of Cannabis plants grown in the United Kingdom from seeds of known origin. Journal of Pharmacology and Pharmacotherapeutics, vol. 44, no. 12, p. 947-951. https://doi.org/10.1111/j.2042-7158.1992.tb07072.x DOI: https://doi.org/10.1111/j.2042-7158.1992.tb07072.x

Qiagen, 2012. DNeasy® Plant Handbook. [online] s.a. [cit. 2015-07-09], Available at: https://www.qiagen.com/cz/resources/resourcedetail?id=95dec8a9-ec37-4457-8884-5dedd8ba9448

Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., Ganal, M. W. 1998. A microsatelitte map of wheat. Genetics, vol. 149, no. 4, p. 2007-2023. PMid:9691054 DOI: https://doi.org/10.1093/genetics/149.4.2007

Siniscalco Gigliano, G. (1999). Preliminary data on the usefulness of internal transcribed spacer (ITS) sequence in Cannabis sativa L. identification. Journal of Forensic Sciences, vol. 44, no. 3, p. 475-477. https://doi.org/10.1520/JFS14497J PMid:10408103 DOI: https://doi.org/10.1520/JFS14497J

Siniscalco Gigliano, G. (2001). Cannabis sativa L. - Botanical problem and molecular approaches in forensic investigations. Forensic Science Review, vol. 13, no. 1, p. 1-17.

Small, E., Cronquist, A. 1976. A practical and natural taxonomy for Cannabis. Taxon, vol. 25, no. 4, p. 405-435. https://doi.org/10.2307/1220524 DOI: https://doi.org/10.2307/1220524

Small, E., Marcus, D. 2002. Hemp: A new crop with new uses for North America. p. 284-326. In: J. Janick and A. Whipkey (eds.), Trends in new crops and new uses. ASHS Press, Alexandria, VA, USA. ISBN 0-970756-5-5.




How to Cite

Vyhnánek, T. ., Trojan, V. ., Štiasna, K. ., Presinszká, M. ., Mrkvicová, E. ., Hřivna, L. ., & Havel, L. . (2015). Testing of DNA isolation for the identification of hemp. Potravinarstvo Slovak Journal of Food Sciences, 9(1), 393–397. https://doi.org/10.5219/509

Most read articles by the same author(s)

1 2 > >>