Interspecies and seasonal differences of retinol in dairy ruminant´s milk


  • Lucia Hodulová Veterinary and Pharmaceutical University Brno, Faculty of Veterinary Hygiene and Ecology, Department of Milk Hygiene and Technology, Palackého tř. 1/3, 612 42 Brno
  • Lenka Vorlová Veterinary and Pharmaceutical University Brno, Faculty of Veterinary Hygiene and Ecology, Department of Milk Hygiene and Technology, Palackého tř. 1/3, 612 42 Brno
  • Romana Kostrhounová Veterinary and Pharmaceutical University Brno, Faculty of Veterinary Hygiene and Ecology, Department of Milk Hygiene and Technology, Palackého tř. 1/3, 612 42 Brno
  • Marcela Klimešová-Vyletělová Výzkumný ústav mlékárenský, s.r.o. Ke Dvoru 12a, 160 00 Praha 6
  • Jan Kuchtí­k Mendel University in Brno, Zemědělská 1, 613 00 Brno



milk, retinol, season, small ruminant


Milk is an essential source of macronutrients and among lipophilic vitamins is significant source of retinol. The contribution of milk to the reference daily intake for retinol varies from 11% to 16%, worldwide. The most consumed dairy products are fresh, dehydrated and condensed milk in which the amonuts of retinol are not modified to those of in whole milk. Retinol is essential to ensure a good functionality of the immune system and plays a critical role in vision, reproduction, cell differentiation as well as growth and development and is found only in animal tissues. The aim of our study was to evaluate the interspecies differences in the retinol concentration of whole raw bovine, caprine and ovine milk and to observe seasonal variation of retinol in bulk tank milk samples. Samples of raw milk were colleceted on different farms in the Czech Republic between 2013 and 2014. Retinol was measured by ultra high performance liquid chromatography with UV detection (325 nm) in isocratic mode after alkaline saponification with methanolic potassium hydroxide solution and liquid-liquid extraction into non polar organic solvent of whole raw milk. To avoid vitamin losses or degradation during the procedure, antioxidants were added to the sample extraction media. Our results indicate significant interspecies differences between bovine and ovine milk and caprine and ovine milk. Concentration of retinol is very similar in bovine and caprine milk 0.96 ±0.11 mg/L, 0.94 ±0.25 mg/L, respectively. The mean concentration in sheep´s milk is 1.75 ±0.24 mg/L. The seasonal variation of retinol in raw bovine milk was detected as high significant, with the highest concentration during winter. These results contribute to the nutrition evaluation of milk in the Czech Republic and indicate, that the sheep´s milk is the best source of retinol among the milks of ruminants kept in the Czech Republic, however it is not used in its fluid form for human consumption.


Download data is not yet available.


Metrics Loading ...


EFSA, 2013. Scientific Opinion on the substantiation of a health claim related to vitamin A and contribution to normal development and function of the immune system pursuant to Article 14 of Regulation (EC) No 1924/2006 [online] s. a. [cit. 2015-02-19] Available at:

Andrés, V., Villanueva, M. J., Tenorio, M. D. 2014. Simultaneous determination of tocopherols, retinol, ester derivatives and β-carotene in milk- and soy-juice based beverages by HPLC with diode-array detection. J. Food Sci. Technol, vol 58, no. 2, p. 557-562. DOI:

CFIA, 2013. Diary vitamin A addition [online] s. a. [cit. 2015-02-23] Available at:

Debier, C., Pottier J., Goffe, Ch. Larondelle Y. 2005. Present knowledge and unexpected behaviours of vitamins A and E in colostrum and milk. Livestock Production Science, vol. 98, no. 1-2, p. 135-147. DOI:

Fedele, V., Claps, S., Rubino, R., Manzi, P., Marconi, S., Pizzoferrato, L. 2004. Seasonal variation in retinol concentration of goat milk associated with grazing compared to indoor feeding. South Afr. J. Anim. Sci. vol. 34 (Suppl. 1), p. 148-150. [cit. 2015-02-18]. Available at:

Hulshof, P. J. M., Roekel-Jansen, T., Bovenkamp, P., West, C. E. 2006. Variation in retinol and carotenoid content of milk and milk products in The Netherlands. J. Food Composit. Anal., vol. 19, no. 1, p. 67-75. DOI:

Klemm, R. D., West, K. P. Jr., Palmer, A. C., Johnson, Q., Randall, P., Ranum, P., Northrop-Clewes, C. 2010. Vitamin A fortification of wheat flour: considerations and current recommendations. Food Nutr. Bull., vol. 31, Suppl.1, p. 47-61. PMid:20629352 DOI:

Kondyli, E., Svarnas, C., Samelis, J., Katsiari, M. C. 2012. Chemical composition and microbiological quality of ewe and goat milk of native Greek breeds. Small Rum. Res. vol. 103, p. 194-199. DOI:

Lidén, M., Erisson, U. 2006. Understanding retinol metabolism: structure and function of retinol dehydrogenyses. J. Biologic. Chemistry, vol. 281, no. 19, p. 13001-13004. PMid:16428379 DOI:

López-Cervantes, J., Sánchéz-Machado, D. I., Ríos_Vázquez, N. J. 2006. High-performance liquid chromatography method for the simultaneous quantification of retinol, α-tocopherol and cholesterol in shrimp waste hydrolysate. J. Chromatogr. A., vol. 1105, no. 1-2, p. 135-139. PMID:16439259 DOI:

Morand-Fehr, P., Fedele V., Decandia M., Le Frileux Y. 2007. Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Rum. Res., vol. 68, no. 1-2, p. 20-34. DOI:

Park Y. W., Haenlein, H. F. W. 2013. Milk and Dairy Products in Human Nutrition: Production Composition and Health. West Sussex: Wiley-Blackwell & Sons, 728 p. ISBN: 978-0-470-67418-5.

Ramalho, H. M. M., Santos, J., Casal, S., Alves, M. R., Oliveira, M. B. P. P. 2012. Fat soluble vitamin (A, D, E and β-carotene) contents from a Portuguese autochthonous cow breed-Minhota. J. Dairy Sci. vol. 95 no. 10, p. 5476-5484. DOI:

Raynal-Ljutovac, K., Lagriffoul, G. Paccardb P., Guillet, I., Chilliardc Y. 2008. Composition of goat and sheep milk products: An update. Small Rumin. Res., vol. 79, no. 1, p. 57-72. DOI:

Regulation (EC) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. OJ L 304/18, 22.11.2011, p. 1-46.

Revilla, I., Lobos-Ortega, I., Vivar-Quintana, A., González-Martín, M. I., Hernández-Hierro J. M., González-Pérez C. 2014. Variations in the contents of vitamins A and E during the ripening of cheeses with different compositions. Czech J. Food Sci. vol. 32, no. 4, p. 342-347. [cit. 2015-02-03]. Available at: DOI:

Salo-Väänänen, P., Ollilainen, V., Mattila, P., Lehikoinen, K., Salmela-Mölsä, E., Piironen, V. 2000. Simultaneous HPLC analysis of fat-soluble vitamins in selected animal products after small-scale extraction. Food Chemistry, vol. 71, no. 4, p. 535-543. DOI:

Sauvant, P., Grolier, P., Azais-Braesco, V. 2002 Vitamin A, Nutritional significance. In Roginski, H., Foquay, J., W., Fox, P. F.. Encyclopedia of dairy sciences. 2nd ed. London: Academic Press, p 2657-2664. ISBN: 978-0-12-227235-6. DOI:

Weber, P., Bendich, A., Machlin, L. J. 1997. Vitamin E and human health: Rationale for determining recommended intake levels. Nutrition, vol. 13, no. 5, p. 450-460. PMid:9225339 DOI:

WHO, 2009. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. [online] s. a. [cit. 2015-02-04] Available at:




How to Cite

Hodulová, L. ., Vorlová, L. ., Kostrhounová, R. ., Klimešová-Vyletělová, M. ., & Kuchtí­k, J. . (2015). Interspecies and seasonal differences of retinol in dairy ruminant´s milk. Potravinarstvo Slovak Journal of Food Sciences, 9(1), 201–205.

Most read articles by the same author(s)