Assessment of the physicochemical profile of gluten-free flour and pasta products

Authors

  • Fariza Sagyntay Almaty Technological University, Faculty of Food Technology, Tole bi 100, 050012, Almaty, Kazakhstan, Tel.: +7 707 271 97 00 https://orcid.org/0000-0002-6805-8888
  • Auelbek Iztaev Almaty Technological University, Faculty of Food Technology, Tole bi 100, 050012, Almaty, Kazakhstan, Tel.: +7 700 216 225
  • Assel Boranbaeva Taraz Regional University named after M.Kh.Dulaty, Suleimanova 7, 080000, Taraz, Kazakhstan, Tel.: +7 702 817 9253
  • Baltash Tarabayev S.Seifullin Kazakh Agro-Technical Research University, Department of Technology of Food and Processing Production, Zhenis Ave. 62, Astana 010011, Kazakhstan, Tel.: +7 771 255 70 96
  • Begzada Soltybayeva Taraz Regional University named after M.Kh.Dulaty, Suleimanova 7, 080000, Taraz, Kazakhstan, Tel.: +7 705519 21 75
  • Nurbibi Mashanova .Seifullin Kazakh Agro-Technical Research University, Department of Technology of Food and Processing Production, Zhenis Ave. 62, Astana 010011, Kazakhstan, Tel.: +7 705 739 81 03
  • Viera Šottníková Mendel University in Brno, Faculty of Agronomy, Department of Food Technology, Zemědělská 1, 613 00, Brno, Czech Republic, Tel.: +420545133068
  • Anar Kabylda AF LPP “Kazakh Research Institute of Processing and Food Industry”, Al-Farabi 47, 010000, Astana, Kazakhstan, Tel.: +7 775 900 15 07

DOI:

https://doi.org/10.5219/1987

Keywords:

gluten-free pasta, flour, celiac, buckwheat, rice, corn

Abstract

The production of food products that do not contain gluten is being actively developed since it is not recommended for certain medical reasons, such as celiac disease. Therefore, developing high-quality and highly nutritional gluten-free (GF) pasta products is crucial. A shortage of domestic gluten-free food products characterises the consumer market of Kazakhstan. Buckwheat, rice, and corn flour are widely used to make gluten-free pasta. The results of the study showed that buckwheat flour contains significantly higher amounts of protein (11.9%), ash (1.54%), iron (2.47%), calcium (38.53%), magnesium (56.11%), phosphorus (267.55) and lower carbohydrate content (67.99%) compared to rice and corn flour. Moreover, pasta made from buckwheat flour also showed higher protein 9.39%, Ca (28.80 mg/100g), Mg (48.28 mg/100g), Fe (2.28 mg/100g), Na (5.50 mg/100g), P (196.45 mg/100g) content. Also, amino acids, such as lysine, tyrosine, alanine, valine, etc., were elevated in buckwheat flour-based pasta. Taken together, these data hint that buckwheat has the potential to become a nutrient-rich GF paste ahead of corn and rice. However, further research is needed to determine the cooking qualities and consumer acceptability.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Wu, X., Qian, L., Liu, K., Wu, J., & Shan, Z. (2021). Gastrointestinal microbiome and gluten in celiac disease. In Annals of Medicine, (Vol. 53, Issue 1, pp. 1797–1805). Informa UK Limited. https://doi.org/10.1080/07853890.2021.1990392 DOI: https://doi.org/10.1080/07853890.2021.1990392

Aljada, B., Zohni, A., & El-Matary, W. (2021). The Gluten-Free Diet for Celiac Disease and Beyond. In Nutrients (Vol. 13, Issue 11, p. 3993). MDPI AG. https://doi.org/10.3390/nu13113993 DOI: https://doi.org/10.3390/nu13113993

Kabylda, A., Sagyntay, F., Iztaev, A., & Muslimov, N. (2022). Investigation of the influence of non-traditional raw materials on the rheological properties of dough in the production of gluten-free pasta. In Journal of Hygienic Engineering and Design (Vol. 40, pp. 36-40). Consulting and Training Center – KEY.

Omaraliyeva, A., Botbayeva, Z., Agedilova, M., Abilova, M., & Zhanaidarova, A. (2021). Determining the optimal parameters of ultra-high-frequency treatment of chickpeas for the production of gluten-free flour. In Eastern-European Journal of Enterprise Technologies (Vol. 5, Issue 11 (113), pp. 51–60). Private Company Technology Center. https://doi.org/10.15587/1729-4061.2021.241877 DOI: https://doi.org/10.15587/1729-4061.2021.241877

O’Shea, N., Arendt, E., & Gallagher, E. (2014). State of the Art in Gluten‐Free Research. In Journal of Food Science (Vol. 79, Issue 6). Wiley. https://doi.org/10.1111/1750-3841.12479 DOI: https://doi.org/10.1111/1750-3841.12479

Lux (née Bantleon), T., Spillmann, F., Reimold, F., Erdös, A., Lochny, A., & Flöter, E. (2023). Physical quality of gluten‐free doughs and fresh pasta made of amaranth. In Food Science & Nutrition (Vol. 11, Issue 6, pp. 3213–3223). Wiley. https://doi.org/10.1002/fsn3.3301 DOI: https://doi.org/10.1002/fsn3.3301

Suo, X., Dall’Asta, M., Giuberti, G., Minucciani, M., Wang, Z., & Vittadini, E. (2022). The effect of chickpea flour and its addition levels on quality and in vitro starch digestibility of corn–rice-based gluten-free pasta. In International Journal of Food Sciences and Nutrition (Vol. 73, Issue 5, pp. 600–609). Informa UK Limited. https://doi.org/10.1080/09637486.2022.2040008 DOI: https://doi.org/10.1080/09637486.2022.2040008

Bolarinwa, I. F., & Oyesiji, O. O. (2021). Gluten free rice-soy pasta: proximate composition, textural properties and sensory attributes. In Heliyon (Vol. 7, Issue 1, p. e06052). Elsevier BV. https://doi.org/10.1016/j.heliyon.2021.e06052

Gao, Y., Janes, M. E., Chaiya, B., Brennan, M. A., Brennan, C. S., & Prinyawiwatkul, W. (2017). Gluten‐free bakery and pasta products: prevalence and quality improvement. In International Journal of Food Science & Technology (Vol. 53, Issue 1, pp. 19–32). Wiley. https://doi.org/10.1111/ijfs.13505 DOI: https://doi.org/10.1111/ijfs.13505

GOST 10846-91 Grain and its products. Method for determination of protein.

GOST 29033-91 Grain and its products. The method fat determination.

GOST Р 51411-99 Grain and its products. Determination of ash content (total ash).

GOST 10845-98 Grain and its products. Method for determination of starch.

GOST 27493-87 Flour and bran. Method for determination of acidity by bollworm.

GOST 13496.3-92 Compound feeds, compound feed raw materials. Methods of moisture determination

GOST 32343-2013 (ISO 6869-2000) Fodder, mixed fodder. Determination of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc content by atomic absorption spectrometry method.

International Organization for Standardization. (2018). Occupational health and safety management systems—Requirements with guidance for use (ISO Standard No. 45001:2018).

GOST Р 54635-2011 Functional food products. Method for determination of vitamin A.

GOST R 50929-96 Premixes. Methods of determination of B vitamins. М-04-41-2005 Methodology for measuring the mass fraction of free forms of water-soluble vitamins in samples of premixes, vitamin supplements, concentrates and mixtures by capillary electrophoresis using the capillary electrophoresis system “Kapel-105”.

GOST 30178-96 Raw materials and food products. Atomic absorption method for determination of toxic elements.

GOST EN 14083-2013 Food products. Determination of trace elements. Determination of lead, cadmium, chromium and molybdenum by atomic absorption spectrometry with atomization in graphite furnace with preliminary mineralization of the sample at elevated pressure.

GOST 31480-2012 М-04-38- 2011 Compound feeds, compound feed raw materials. Determination of amino acids content (lysine, methionine, threonine, cystine and tryptophan) by capillary electrophoresis method.

GOST P 55569-2013 M-04-38-2009 Feeds, mixed fodder, mixed fodder raw materials. Determination of proteinogenic amino acids by capillary electrophoresis method.

Hussein, A. M. S., El-Aal, H. A. A., Morsy, N. M., & Hassona, M. M. (2024). Chemical, rheological, and sensorial properties of Baladi bread supplemented with buckwheat flour produced in Egypt. In Scientific Reports (Vol. 14, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-023-48686-1 DOI: https://doi.org/10.1038/s41598-023-48686-1

Van Hung, P., Maeda, T., Tsumori, R., & Morita, N. (2007). Characteristics of fractionated flours from whole buckwheat grain using a gradual milling system and their application for noodle making. In Journal of the Science of Food and Agriculture (Vol. 87, Issue 15, pp. 2823–2829). Wiley. https://doi.org/10.1002/jsfa.3018 DOI: https://doi.org/10.1002/jsfa.3018

Kraithong, S., Lee, S., & Rawdkuen, S. (2018). Physicochemical and functional properties of Thai organic rice flour. In Journal of Cereal Science (Vol. 79, pp. 259–266). Elsevier BV. https://doi.org/10.1016/j.jcs.2017.10.015 DOI: https://doi.org/10.1016/j.jcs.2017.10.015

Zulfisa, Z., Renatalia Fika, Ainun Naim, & Ezy Wirna. (2022). Effect of variations in hydrolysis time on carbohydrate levels of white rice flour (Oryza sativa L.) Use of the schoorl luff method. In Jurnal Ilmiah Kedokteran dan Kesehatan (Vol. 1, Issue 2, pp. 104–112). Politeknik Pratama Purwokerto. https://doi.org/10.55606/klinik.v1i2.733 DOI: https://doi.org/10.55606/klinik.v1i2.733

Dongmo, H., Tambo, S. T., Teboukeu, G. B., Mboukap, A. N., Fotso, B. S., Tekam Djuidje, M. C., & Klang, J. M. (2020). Effect of process and variety on physico-chemical and rheological properties of two corn flour varieties (Atp and Kassaï). In Journal of Agriculture and Food Research (Vol. 2, p. 100075). Elsevier BV. https://doi.org/10.1016/j.jafr.2020.100075 DOI: https://doi.org/10.1016/j.jafr.2020.100075

Torbica, A., Hadnađev, M., & Dapčević Hadnađev, T. (2012). Rice and buckwheat flour characterisation and its relation to cookie quality. In Food Research International (Vol. 48, Issue 1, pp. 277–283). Elsevier BV. https://doi.org/10.1016/j.foodres.2012.05.001 DOI: https://doi.org/10.1016/j.foodres.2012.05.001

Sofi, S. A., Ahmed, N., Farooq, A., Rafiq, S., Zargar, S. M., Kamran, F., Dar, T. A., Mir, S. A., Dar, B. N., & Mousavi Khaneghah, A. (2022). Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten‐free products: An updated overview. In Food Science & Nutrition (Vol. 11, Issue 5, pp. 2256–2276). Wiley. https://doi.org/10.1002/fsn3.3166 DOI: https://doi.org/10.1002/fsn3.3166

Vitali, D., Amidžić Klarić, D., & Vedrina Dragojević, I. (2010). Nutritional and functional properties of certain gluten-free raw materials. In Czech Journal of Food Sciences (Vol. 28, Issue 6, pp. 495–505). Czech Academy of Agricultural Sciences. https://doi.org/10.17221/253/2009-cjfs DOI: https://doi.org/10.17221/253/2009-CJFS

Marti, A., & Pagani, M. A. (2013). What can play the role of gluten in gluten free pasta? In Trends in Food Science & Technology (Vol. 31, Issue 1, pp. 63–71). Elsevier BV. https://doi.org/10.1016/j.tifs.2013.03.001 DOI: https://doi.org/10.1016/j.tifs.2013.03.001

Veličković, A., Petrović, S., Savić, S., & Petronijević, Z. (2018). Composition of gluten-free flours with special reference to mineral substances. In XXIII Savetovanje o biotehnologiji (pp. 518–523). Univerzitet u Kragujevcu, Agronomski fakultet u Čačku.

Jha, R., Zhang, K., He, Y., Mendler-Drienyovszki, N., Magyar-Tábori, K., Quinet, M., Germ, M., Kreft, I., Meglič, V., Ikeda, K., Chapman, M. A., Janovská, D., Podolska, G., Woo, S.-H., Bruno, S., Georgiev, M. I., Chrungoo, N., Betekhtin, A., & Zhou, M. (2024). Global nutritional challenges and opportunities: Buckwheat, a potential bridge between nutrient deficiency and food security. In Trends in Food Science & Technology (Vol. 145, p. 104365). Elsevier BV. https://doi.org/10.1016/j.tifs.2024.104365 DOI: https://doi.org/10.1016/j.tifs.2024.104365

Park, J.-D., & Zheng, W. (2012). Human Exposure and Health Effects of Inorganic and Elemental Mercury. In Journal of Preventive Medicine & Public Health (Vol. 45, Issue 6, pp. 344–352). Korean Society for Preventive Medicine. https://doi.org/10.3961/jpmph.2012.45.6.344 DOI: https://doi.org/10.3961/jpmph.2012.45.6.344

Punshon, T., & Jackson, B. P. (2018). Essential micronutrient and toxic trace element concentrations in gluten containing and gluten-free foods. In Food Chemistry (Vol. 252, pp. 258–264). Elsevier BV. https://doi.org/10.1016/j.foodchem.2018.01.120 DOI: https://doi.org/10.1016/j.foodchem.2018.01.120

Saeed, F., Afzaal, M., Ikram, A., Imran, A., Hussain, S., Mohamed, A. A., Alamri, M. S., & Hussain, M. (2021). Exploring the amino acid composition and vitamin‐B profile of buckwheat varieties. In Journal of Food Processing and Preservation (Vol. 45, Issue 9). Hindawi Limited. https://doi.org/10.1111/jfpp.15743 DOI: https://doi.org/10.1111/jfpp.15743

Rachman, A., Brennan, M. A., Morton, J., Toricco, D., & Breannan S. C. (2023). In-vitro digestibility, protein digestibility corrected amino acid, and sensory properties of banana-cassava gluten-free pasta with soy protein isolate and egg white protein addition. In Food Science and Human Wellness (Vol. 12, Issue 2, pp. 520-527). https://doi.org/10.1016/j.fshw.2022.07.054 DOI: https://doi.org/10.1016/j.fshw.2022.07.054

Vici, G., Belli, L., Biondi, M., & Polzonetti, V. (2016). Gluten free diet and nutrient deficiencies: A review. In Clinical nutrition (Vol. 35, Issue 6, pp. 1236–1241). https://doi.org/10.1016/j.clnu.2016.05.002 DOI: https://doi.org/10.1016/j.clnu.2016.05.002

Rybicka, I., & Gliszczynska-Swiglo, A. (2017). Gluten-Free Flours from Different Raw Materials as the Source of Vitamin B1, B2, B3 and B6. In Journal of nutritional science and vitaminology (Vol. 63, Issue 2, pp. 125–132). https://doi.org/10.3177/jnsv.63.125 DOI: https://doi.org/10.3177/jnsv.63.125

Arcangelis, E.D., Cuomo, F., Trivisonno, M.C., Marconi, E., & Messia, M.C. (2020). Gelatinization and pasta making conditions for buckwheat gluten-free pasta. In Journal of Cereal Science (Vol. 95, p. 103073). https://doi.org/10.1016/j.jcs.2020.103073 DOI: https://doi.org/10.1016/j.jcs.2020.103073

Yalcin, S. (2020). Quality characteristics, mineral contents and phenolic compounds of gluten free buckwheat noodles. In Journal of Food Science and Technology (Vol. 58, Issue 7, pp. 2661–2669). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-020-04772-0 DOI: https://doi.org/10.1007/s13197-020-04772-0

Cabrera-Chávez, F., Calderón de la Barca, A. M., Islas-Rubio, A. R., Marti, A., Marengo, M., Pagani, M. A., Bonomi, F., & Iametti, S. (2012). Molecular rearrangements in extrusion processes for the production of amaranth-enriched, gluten-free rice pasta. In LWT (Vol. 47, Issue 2, pp. 421–426). Elsevier BV. https://doi.org/10.1016/j.lwt.2012.01.040 DOI: https://doi.org/10.1016/j.lwt.2012.01.040

Bolarinwa, I. F., & Oyesiji, O. O. (2021). Gluten free rice-soy pasta: proximate composition, textural properties and sensory attributes. In Heliyon (Vol. 7, Issue 1, p. e06052). Elsevier BV. https://doi.org/10.1016/j.heliyon.2021.e06052 DOI: https://doi.org/10.1016/j.heliyon.2021.e06052

Giménez, M. A., Drago, S. R., Bassett, M. N., Lobo, M. O., & Sammán, N. C. (2016). Nutritional improvement of corn pasta-like product with broad bean (Vicia faba) and quinoa (Chenopodium quinoa). In Food Chemistry (Vol. 199, pp. 150–156). Elsevier BV. https://doi.org/10.1016/j.foodchem.2015.11.065 DOI: https://doi.org/10.1016/j.foodchem.2015.11.065

Thanushree, M. P., Sudha, M. L., Martin, A., Vanitha, T., & Kasar, C. (2022). Enhancing the nutritional and quality profiles of buckwheat noodles: Studies on the effects of methods of milling and improvers. In LWT (Vol. 160, p. 113286). Elsevier BV. https://doi.org/10.1016/j.lwt.2022.113286 DOI: https://doi.org/10.1016/j.lwt.2022.113286

Matthews, D. E. (2020). Review of Lysine Metabolism with a Focus on Humans. In The Journal of Nutrition (Vol. 150, pp. 2548S-2555S). Elsevier BV. https://doi.org/10.1093/jn/nxaa224 DOI: https://doi.org/10.1093/jn/nxaa224

Fernstrom, J. D., & Fernstrom, M. H. (2007). Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain2. In The Journal of Nutrition (Vol. 137, Issue 6, pp. 1539S-1547S). Elsevier BV. https://doi.org/10.1093/jn/137.6.1539s DOI: https://doi.org/10.1093/jn/137.6.1539S

Messia, M. C., Cuomo, F., Quiquero, M., Verardo, V., & Marconi, E. (2023). Assessment of Nutritional Value and Maillard Reaction in Different Gluten-Free Pasta. In Foods (Vol. 12, Issue 6, p. 1221). MDPI AG. https://doi.org/10.3390/foods12061221 DOI: https://doi.org/10.3390/foods12061221

Thompson, T. (1999). Thiamin, Riboflavin, and Niacin Contents of the Gluten-Free Diet. In Journal of the American Dietetic Association (Vol. 99, Issue 7, pp. 858–862). Elsevier BV. https://doi.org/10.1016/s0002-8223(99)00205-9 DOI: https://doi.org/10.1016/S0002-8223(99)00205-9

Paez-Hurtado, A. M., Calderon-Ospina, C. A., & Nava-Mesa, M. O. (2022). Mechanisms of action of vitamin B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) in pain: a narrative review. In Nutritional Neuroscience (Vol. 26, Issue 3, pp. 235–253). Informa UK Limited. https://doi.org/10.1080/1028415x.2022.2034242 DOI: https://doi.org/10.1080/1028415X.2022.2034242

Tardy, A.-L., Pouteau, E., Marquez, D., Yilmaz, C., & Scholey, A. (2020). Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. In Nutrients (Vol. 12, Issue 1, p. 228). MDPI AG. https://doi.org/10.3390/nu12010228 DOI: https://doi.org/10.3390/nu12010228

Downloads

Published

2024-06-26

How to Cite

Sagyntay, F., Iztaev, A., Boranbaeva, A., Tarabayev, B., Soltybayeva, B., Mashanova, N., Šottníková, V., & Kabylda, A. (2024). Assessment of the physicochemical profile of gluten-free flour and pasta products. Potravinarstvo Slovak Journal of Food Sciences, 18, 605–618. https://doi.org/10.5219/1987