Numerical methods and image processing techniques for melissopalynological honey analysis

Authors

  • Zdeňka Javůrková University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Foodstuffs Hygiene and Technology, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic, Tel.: +42041562704 https://orcid.org/0000-0001-7088-3142
  • Matej Pospiech University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Foodstuffs Hygiene and Technology, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic, Tel.: +42041562704 https://orcid.org/0000-0002-3340-7195
  • Simona Ljasovská University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Foodstuffs Hygiene and Technology, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic, Tel.: +42041562704 https://orcid.org/0000-0002-1186-6286
  • Pavel Hrabec Brno University of Technology, Faculty of Mechanical Engineering, Deptement of Statistics and Optimization, Technická 2896/2, 616 69, Brno, Czech Republic, Tel.: +420541142722 https://orcid.org/0000-0002-0536-0107
  • Bohuslava Tremlová University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Foodstuffs Hygiene and Technology, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic, Tel.: +42041562700

DOI:

https://doi.org/10.5219/1517

Keywords:

Bright field microscopy, extended depth of focus, length/width ratio pollen, morphometry

Abstract

Pollen analysis is a method used for verification of the botanical and geographical honey origin. Currently, much effort is being made to introduce automated systems with the use of image analysis programs. The automatic analysis is impeded by the insufficient depth of field of objects when using a light microscope, however, this can be avoided by using image reconstruction from images obtained from different focal planes. In this method, testing was performed on the normal focus (NF) and extended-depth-of-focus (EDF) images. These two methods were compared and statistically evaluated. The number of pollen grains and selected morphometric characteristics were compared. For EDF images, a higher number of pollen grains was obtained for the analysis, and except for the length/width ratio, a statistically significant difference was observed in the characteristics of pollen grains between the compared NF and EDF methods.

Downloads

Download data is not yet available.

References

Al-Watban, A. A., Al-Mogren, E., Doaigey, A. R., El Zaidy, M. 2013. Pollen morphology of seven wild species of Acacia in Saudi Arabia. African Journal of Plant Science, vol. 7, no. 12, p. 602-607. https://doi.org/10.5897/AJPS2012.0989

Anděl, J. 2011. Základy matematické statistiky (Basics of mathematical statistics). 3rd ed. Univerzita Karlova v Praze, Matematicko-fyzikální fakulta. Matfyzpress, 358 p. (In Czech) ISBN: 978-80-7378-162-0.

Bryant Jr., V. M., Jones, G. D. 2001. The r‐values of honey: Pollen coefficients. Palynology, vol. 25, no. 1, p. 11-28. https://doi.org/10.1080/01916122.2001.9989554

Čeksterytė, V., Kurtinaitienė, B., Balžekas, J. 2013. Pollen diversity in honey collected from Lithuania's protected landscape areas. Proceedings of the Estonian Academy of Sciences, vol. 62, no. 4, p. 277-282. https://doi.org/10.3176/proc.2013.4.08

Codex Alimentarius. 2001. Standard for Honey: Codex Stan. 12, 8 p.

Currie, A. J., Noiton, D. A., Lawes, G. S., Bailey, D. 1997. Preliminary results of differentiating apple sports by pollen ultrastructure. Euphytica, vol. 98, no. 3, p. 155-161. https://doi.org/10.1023/A:1003174529263

D'Albore, G. R. 1998. Mediterranean melissopalynology. Università degli studi di Perugia, Facoltà di agraria, Istituto di Entomologia agraria. 466 p.

Demianowicz, Z. 1964. Charakteristik der einartenhonige (Characteristic of the monofloral honey). Annals Abeille, vol. 7, no. 4, p. 273-288. (In German) https://doi.org/10.1051/apido:19640401

Evrenosoğlu, Y., Misirli, A. 2009. Investigations on the Pollen Morphology of Some Fruit Species. Turkish Journal of Agriculture and Forestry, vol. 33, no. 2, p. 181-190. https://doi.org/10.3906/tar-0801-47

Flusser, J., Suk, T., Zitová, B. 2009. Moments And Moment Invariants In Pattern Recognition. Chichester, UK : John Wiley & Sons Ltd., 317 p. ISBN 978-0-470-69987-4.

France, I., Duller, A. W. G., Lamb, H. F., Duller, G. A. T. 1997. A comparative study of approaches to automatic pollen identification. In BMVC, 10 p. Available at: https://www.researchgate.net/profile/Geoff_Duller/publication/221259647_A_comparative_study_of_approaches_to_automatic_pollen_identification/links/0c96052c5600a2de10000000/A-comparative-study-of-approaches-to-automatic-pollen-identification.pdf

Geraci, A., Polizzano, V., Marino, P., Schicchi, R. 2012. Investigation on the pollen morphology of traditional cultivars of Prunus species in Sicily. Acta Societatis Botanicorum Poloniae, vol. 81, no. 3, p. 175-184. https://doi.org/10.5586/asbp.2012.017

Hebda, R. J., Chinnappa, C. C. 1994. Studies on pollen morphology of Rosaceae. Acta Botanica Gallica, vol. 141, no. 2, p. 183-193. https://doi.org/10.1016/0034-6667(90)90123-Z

Holt, K., Allen, G., Hodgson, R., Marsland, S., Flenley, J. 2011. Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory. Review of Palaeobotany and Palynology, vol. 167, no. 3-4, p. 175-183. https://doi.org/10.1016/j.revpalbo.2011.08.006

Jones, G. D., Bryant, V. 2001. Is one drop enough. American Association of Stratigraphic Palynologists Foundation, p. 483-487.

Kolayli, S., Can, Z., Yildiz, O., Sahin, H., Karaoglu, S. A. 2016. A comparative study of the antihyaluronidase, antiurease, antioxidant, antimicrobial and physicochemical properties of different unifloral degrees of chestnut (Castanea sativa Mill.) honeys. Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 31, no. sup3, p. 96-104. https://doi.org/10.1080/14756366.2016.1209494

Laboratory Imaging. 2019. Manuál NIS-Elements AR v. 5.20.00 (NIS-Elements AR Manual v. 5.20.00). Imaging software, 144 p.

Lau, P., Bryant, V., Rangel, J. 2018. Determining the minimum number of pollen grains needed for accurate honey bee (Apis mellifera) colony pollen pellet analysis. Palynology, vol. 42, no. 1, p. 36-42. https://doi.org/10.1080/01916122.2017.1306810

Li, P., Treloar, W. J., Flenley, J. R., Empson, L. 2004. Towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains. Journal of Quaternary Science, vol. 19, no. 8, p. 755-762. https://doi.org/10.1002/jqs.874

Montgomery, D. C., Runger, G. C. 2011. Applied Statistics And Probability For Engineers. 5th ed. Hoboken, USA : John Wiley, 768 p. ISBN 978-0-470-05304-1.

Nazeri Joneghani, V. 2008. Pollen morphology of the genus Malus (Rosaceae). Iranian Journal of Science and Technology, vol. 32, no. 2, p. 89-97. https://doi.org/10.22099/IJSTS.2008.2246

Oddo, L. P., Piana, L., Bogdanov, S., Bentabol, A., Gotsiou, P., Kerkvliet, J., Martin, P., Morlot, M., Ortit Valbuena, A., Ruoff, K., von der Ohe, K. 2004. Botanical species giving unifloral honey in Europe. Apidologie, vol. 35, no. Suppl. 1, p. S82-S93. https://doi.org/10.1051/apido:2004045

Oddo, L. P., Piazza, M. G., Sabatini, A. G., Accorti, M. 1995. Characterization of unifloral honeys. Apidologie, vol. 26, no. 6, p. 453-465. https://doi.org/10.1051/apido:19950602

Pospiech, M., Javůrková, Z., Tremlová, B., Běhalová, H. 2019. Characterization of fruit trees pollen. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 634-643. https://doi.org/10.5219/1096

Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., Le Thomas, A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, vol. 143, no. 1-2, p. 1-81. https://doi.org/10.1016/j.revpalbo.2006.06.008

Ranzato, M., Taylor, P. E., House, J. M., Flagan, R. C., LeCun, Y., Perona, P. 2007. Automatic recognition of biological particles in microscopic images. Pattern Recognition Letters, vol. 28, no. 1, p. 31-39. https://doi.org/10.1016/j.patrec.2006.06.010

Redondo, R., Bueno, G., Chung, F., Nava, R., Marcos, J. V., Cristóbal, G., Rodríguez, T., Gonzalez-Porto, A., Pardo, C., Déniz, O., Escalante-Ramírez, B. 2015. Pollen segmentation and feature evaluation for automatic classification in bright-field microscopy. Computers and Electronics in Agriculture, vol. 110, p. 56-69. https://doi.org/10.1016/j.compag.2014.09.020

Ruoff, K., Bogdanov, S. 2004. Authenticity of Honey and Other Bee Products. Apiacta, vol. 38, p. 317-327. Available at: http://www.fingalbeekeepers.net/Articles%20and%20Documents/Honey%20Related/ruoff_1.pdf

Shafiee, S., Minaei, S., Moghaddam-Charkari, N., Ghasemi-Varnamkhasti, M., Barzegar, M. 2013. Potential application of machine vision to honey characterization. Trends in Food Science & Technology, vol. 30, no. 2, p. 174-177. https://doi.org/10.1016/j.tifs.2012.12.004

Švamberk, V. 2015. Prostředí a včely: ekologie (nejen) pro včelaře (Environment and bees: ecology (not only) for beekeepers). Prague, Czech republic : Maja. 224 s. (In Czech) ISBN 978-80-88045-01-4.

Treloar, W. J., Taylor, G. E., Flenley, J. R. 2004. Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images. Journal of Quaternary Science, vol. 19, no. 8, p. 745-754. https://doi.org/10.1002/jqs.871

Tympel, V. 1997. Three-dimensional animation with conventional light microscopy. In Three-Dimensional Microscopy: Image Acquisition and Processing IV, vol. 2984, p. 190-198. International Society for Optics and Photonics. https://doi.org/10.1117/12.271267

Valdecasas, A. G., Marshall, D., Becerra, J. M., Terrero, J. J. 2001. On the extended depth of focus algorithms for bright field microscopy. Micron, vol. 32, no. 6, p. 559-569. https://doi.org/10.1016/S0968-4328(00)00061-5

Von Der Ohe, W., Oddo, L. P., Piana, M. L., Morlot, M., Martin, P. 2004. Harmonized methods of melissopalynology. Apidologie, vol. 35, no. Suppl. 1, p. S18-S25. https://doi.org/10.1051/apido:2004050

Wu, Y., Wang, C. 2009. Extended depth of focus image for phytolith analysis. Journal of Archaeological Science, vol. 36, no. 10, p. 2253-2257. https://doi.org/10.1016/j.jas.2009.06.010

Published

2021-01-28

How to Cite

Javůrková, Z., Pospiech, M., Ljasovská, S., Hrabec, P., & Tremlová, B. (2021). Numerical methods and image processing techniques for melissopalynological honey analysis. Potravinarstvo Slovak Journal of Food Sciences, 15, 58–65. https://doi.org/10.5219/1517

Most read articles by the same author(s)

1 2 > >>