Prevalence of Campylobacter spp. in a poultry and pork processing plants

Authors

  • Yuliya Yushina V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Department of hygiene of production and microbiology, Talalikhina st. 26, 109316, Moscow, Russia, Tel.: 8-916-433-51-99
  • Dagmara Bataeva V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Department of hygiene of production and microbiology, Talalikhina st. 26, 109316, Moscow, Russia, Tel.:8-985-663-84-06
  • Anzhelika Makhova V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Department of hygiene of production and microbiology, Talalikhina st. 26, 109316, Moscow, Russia, Tel.: 8-916-570-91-79
  • Elena Zayko V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Department of hygiene of production and microbiology, Talalikhinast. 26, 109316, Moscow, Russia, Tel.: 8-960-548-71-95 https://orcid.org/0000-0002-5048-9321

DOI:

https://doi.org/10.5219/1422

Keywords:

Campylobacter jejuni, Campylobacter coli, poultry processing, pork processing

Abstract

The study aimed to investigate the prevalence of Campylobacter spp. in different stages of poultry and pork processing in the Central region of Russia. A total of 47 Campylobacter isolates were obtained from 107 samples from poultry processing plants (40.2%): 87.2% were identified as Campylobacter jejuni, whereas 12.8% were identified as Campylobacter coli. The prevalence of Campylobacter was significantly (p <0.05) higher after evisceration in the poultry processing plant. Campylobacter spp.was detected in 62.7% of the equipment and environmental samples. From positive samples of Campylobacter spp., 84.3% of Campylobacter jejuni and 15.7% Campylobacter coli were observed. A total of nine Campylobacter isolates were obtained from 116 samples from pork processing plants (7.8%): 33.3% of them were identified as Campylobacter jejuni whereas 66.7% were identified as Campylobacter coli. Splitting and evisceration were also critical in Campylobacter contamination. Almost all pork carcasses were Campylobacter positive, and all of them were identified as Campylobacter coli. The prevalence of positive Campylobacter samples in poultry processing plants was significantly (p < 0.05) higher than in pork processing plants.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Allos, B. M. 2001. Campylobacter jejuni infections: update on emerging issues and trends. Clin. Infect. Dis., vol. 32, no. 8, p. 1201-1206. https://doi.org/10.1086/319760 DOI: https://doi.org/10.1086/319760

Altekruse, S. F., Stern, N. J., Fields, P. I., Swerdlow, D. 1999. Campylobacter jejuni - an emerging foodborne pathogen. Emerg. Infect. Dis., vol. 5, no. 1, p. 28-35. https://doi.org/10.3201/eid0501.990104 DOI: https://doi.org/10.3201/eid0501.990104

Avrain, L., Humbert, F., Sanders, P., Vernozy-Rozand, C., Kempf, I. 2004. Antimicrobial resistance in Campylobacter from pigs in French slaughterhouses. Rev. Med. Vet., vol. 155, p. 156-158.

Bataeva, D. S., Sokolova, O. V. 2018. The survival of Campylobacter jejuni NCTC11168 at different temperature influences in meat systems. Vsyo o myase, vol. 60, p. 44-45. https://doi.org/10.21323/2071-2499-2018-5-44-45 DOI: https://doi.org/10.21323/2071-2499-2018-5-44-45

Berrang, M. E., Dickens, J. A. 2000. Presence and level of Campylobacter spp. on broiler carcasses throughout the processing plant. J. Appl. Poult. Res., vol. 9, no. 1, p. 43-47 https://doi.org/10.1093/japr/9.1.43 DOI: https://doi.org/10.1093/japr/9.1.43

Berrang, M. E., Smith, D. P., Windham, W. R., Feldner, P. W. 2004. Effect of intestinal content contamination on broiler carcass Campylobacter counts. J. Food. Prot., vol. 67, no. 2, p. 235-238. https://doi.org/10.4315/0362-028X-67.2.235 DOI: https://doi.org/10.4315/0362-028X-67.2.235

Blaser, M. J. 1997. Epidemiologic and clinical features of Campylobacter jejuni infections. J. Infect. Dis., vol. 176, no. 2, p. 103-105. https://doi.org/10.1086/513780 DOI: https://doi.org/10.1086/513780

Bogdanovičová, K., Skočková, A., Šťástková, Z., Koláčková, I., Karpíšková, R. 2015. The bacteriological quality of goat and ovine milk. Potravinarstvo, vol. 9, no. 1, p. 72-76. https://doi.org/10.5219/438 DOI: https://doi.org/10.5219/438

Borges, K. A., Cisco, I. C., Furian, T. Q., Tedesco, D. C., Rodrigues, L. B., Nascimento, V. P., dos Santos, L. R. 2020. Detection and quantification of Campylobacter spp. in Brazilian poultry processing plants. J. Infect. Dev. Ctries, vol. 14, p. 109-113. https://doi.org/10.3855/jidc.11973 DOI: https://doi.org/10.3855/jidc.11973

CDC. 2019. Campylobacter (Campylobacteriosis). Information for Health Professionals. Available at: https://www.cdc.gov/campylobacter/technical.html.

Corry, J. E. L., Atabay, H. I. 2001. Poultry as a source of Campylobacter and related organisms. Symp. Ser. Soc. Appl. Microbiol., vol. 30, no. S6, p. 96-114. https://doi.org/10.1046/j.1365-2672.2001.01358.x DOI: https://doi.org/10.1046/j.1365-2672.2001.01358.x

Elvers, K. T., Morris, V. K., Newell, D. G., Allen, V. M., 2011. Molecular tracking, through processing, of Campylobacter strains colonizing broiler flocks. Appl. Environ. Microbiol., vol. 77, no. 16, p. 5722-5729. https://doi.org/10.1128/AEM.02419-10 DOI: https://doi.org/10.1128/AEM.02419-10

EFSA. 2010. Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008. B. Analysis of factors associated with Campylobacter colonisation of broiler batches and with Campylobacter contamination of broiler carcasses; and investigation of the culture method diagnostic characteristics used to analyse broiler carcass samples. EFSA J., vol. 8, p. 1522. https://doi.org/10.2903/j.efsa.2010.1522 DOI: https://doi.org/10.2903/j.efsa.2010.1522

EFSA and ECDC. 2019. European Food Safety Authority and European Centre for Disease Prevention and Control). European Union One Health 2018 Zoonoses Report. EFSA Journal vol. 17, no. 12, 276 p. https://doi.org/10.2903/j.efsa.2019.5926 DOI: https://doi.org/10.2903/j.efsa.2019.5926

Facciolà, A., Riso, R., Avventuroso, E., Visalli, G., Delia, S. A., Laganà, P. 2017. Campylobacter: from microbiology to prevention. J. Prev. Med. Hyg., vol. 58, no. 2, p. E79–E92.

Fosse, J, Seegers, H, Magras, C. 2009. Prevalence and risk factors for bacterial food-borne zoonotic hazards in slaughter pigs: a review. Zoonoses Public Health, vol. 56, p. 429-454. https://doi.org/10.1111/j.1863-2378.2008.01185.x DOI: https://doi.org/10.1111/j.1863-2378.2008.01185.x

Geissler, A. L., Bustos Carrillo, F., Swanson, K., Patrick, M. E., Fullerton, K. E., Bennett, C., Barrett, K., Mahon, B. E. 2017. Increasing Campylobacter infections, outbreaks, and antimicrobial resistance in the United States, 2004-2012. Clin. Infect. Dis., vol. 65, no. 10, p. 1624-1631. https://doi.org/10.1093/cid/cix624 DOI: https://doi.org/10.1093/cid/cix624

Gruntar, I., Biasizzo, M., Kušar, D., Pate, M., Ocepek, M. 2015. Campylobacter jejuni contamination of broiler carcasses: population dynamics and genetic profiles at slaughterhouse level. Food Microbiol., vol. 50, p. 97-101. https://doi.org/10.1016/j.fm.2015.03.007 DOI: https://doi.org/10.1016/j.fm.2015.03.007

Guerin, M. T, Martin, W, Reiersen, J., Berke, O., McEwen, S. A., Bisaillon, J-R., Lowman, R. 2007. A farm-level study of risk factors associated with the colonization of broiler flocks with Campylobacter spp. in Iceland, 2001-2004. Acta Vet. Scand., vol. 49, no. 1, 18 p. https://doi:10.1186/1751-0147-49-18 DOI: https://doi.org/10.1186/1751-0147-49-18

Hald, B., Sommer, H. M., Skovgård, H. 2007. Use of fly screens to reduce Campylobacter spp. introduction in broiler houses. Emerg Infect Dis., vol. 13, no. 12, p. 1951-1953. https://doi:10.3201/eid1312.070488 DOI: https://doi.org/10.3201/eid1312.070488

Hansson, I., Vågsholm, I., Svensson, L., Olsson Engvall, E. 2007. Correlation between Campylobacter spp. prevalence in the environment and broiler flocks. J. Appl. Microbiol., vol. 103, no. 3, p. 640-649. https://doi:10.1111/j.1365-2672.2007.03291.x DOI: https://doi.org/10.1111/j.1365-2672.2007.03291.x

Hayama, Y., Yamamoto, T., Kasuga, F., Tsutsui, T. 2011. Simulation model for Campylobacter cross-contamination during poultry processing at slaughterhouses. Zoonoses Public Health, vol. 58, no. 6, p. 399-406. https://doi.org/10.1111/j.1863-2378.2010.01385.x DOI: https://doi.org/10.1111/j.1863-2378.2010.01385.x

Hinton, Jr, A., Cason, J. A., Hume, M., Ingram, K. D. 2004. Spread of Campylobacter spp. during poultry processing in different seasons. Int. J. Poult. Sci., vol. 3, no. 7, p. 432-437. https://doi.org/10.3923/ijps.2004.432.437 DOI: https://doi.org/10.3923/ijps.2004.432.437

Horrocks, S. M., Anderson, R. C., Nielsbet, D. J., Ricke, S. C. 2009. Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe, vol. 15, no. 1-2, p. 18-25. https://doi.org/10.1016/j.anaerobe.2008.09.001 DOI: https://doi.org/10.1016/j.anaerobe.2008.09.001

ISO 10272-1. 2017. Microbiology of the food chain — Horizontal method for detection and enumeration of Campylobacter spp. — Part 1: Detection method.

ISO 18593. 2018. Microbiology of the food chain - Horizontal methods for surface sampling.

Jorgensen, F., Ellis-Iversen, J., Rushton, S., Bull, S. A., Harris, S. A., Bryan, S. J., Gonzalez, A., Humphrey, T. J. 2011. Influence of season and geography on Campylobacter jejuni and C. coli subtypes in housed broiler flocks reared in Great Britain. Appl. Environ. Microbiol., vol. 77, no. 11, p. 3741-3748. https://doi.org/10.1128/AEM.02444-10 DOI: https://doi.org/10.1128/AEM.02444-10

Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M., Man, S. M. 2015. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev., vol. 28, no. 3, p. 687-720. https://doi.org/10.1128/CMR.00006-15 DOI: https://doi.org/10.1128/CMR.00006-15

Lee, S. K., Park, H. J., Lee, J. H., Lim, J. S., Seo, K. H., Heo, E. J., Kim, Y. J., Wee, S. H., Moon, J. 2017. Distribution and molecular characterization of Campylobacter species at different processing stages in two poultry processing plants. Foodborne Pathog. Dis., vol. 14, no. 3, p. 141-143. https://doi.org/10.1089/fpd.2016.2218 DOI: https://doi.org/10.1089/fpd.2016.2218

Minvielle, B., Magras, C., Laroche, M., Desmonts, M. H., Mircovich, C. 2007. Campylobacter in pork food chain: a quantitative hazard analysis. 7th International Symposium on the Epidemiology & Control of Foodborne Pathogens in Pork, p. 145-148. https://doi.org/10.31274/safepork-180809-80 DOI: https://doi.org/10.31274/safepork-180809-80

Nesbit, E. G., Gibbs, P., Dreesen, D. W., Lee, M. D. 2001. Epidemiologic features of Campylobacter jejuni isolated from poultry broiler houses and surrounding environments as determined by use of molecular strain typing. Am. J. Vet. Res., vol. 62, no. 2, p. 190-194. https://doi:10.2460/ajvr.2001.62.190 DOI: https://doi.org/10.2460/ajvr.2001.62.190

Noormohamed, A., Fakhr, M. 2014. Molecular typing of Campylobacter jejuni and Campylobacter coli isolated from various retail meats by MLST and PFGE. Foods, vol. 3, no. 1, p. 82-93. https://doi.org/10.3390/foods3010082 DOI: https://doi.org/10.3390/foods3010082

Pepe, T., De Dominicis, R., Esposito, G., Ventrone, I., Fratamico, P. M., Cortesi, M. L. 2009. Detection of Campylobacter from poultry carcass skin samples at slaughter in southern Italy. J. Food Prot., vol. 72, no. 8, p. 1718-1721. https://doi.org/10.4315/0362-028X-72.8.1718 DOI: https://doi.org/10.4315/0362-028X-72.8.1718

Perez-Arnedo, I., Gonzalez-Fandos, E. 2019. Prevalence of Campylobacter spp. in poultry in three spanish farms, a slaughterhouse and a further processing plant. Foods, vol. 8, no. 3, p. 111. https://doi.org/10.3390/foods8030111 DOI: https://doi.org/10.3390/foods8030111

Peyrat, M. B., Soumet, C., Maris, P., Sanders, P. 2008. Phenotypes and genotypes of Campylobacter strains isolated after cleaning and disinfection in poultry slaughterhouses. Vet. Microbiol., vol. 128, no. 3-4, p. 313-326. https://doi.org/10.1016/j.vetmic.2007.10.021 DOI: https://doi.org/10.1016/j.vetmic.2007.10.021

Prachantasena, S., Charununtakorn, P., Muangnoicharoen, S., Hankla, L., Techawal, N., Chaveerach, P., Tuitemwong, P., Chokesajjawatee, N., Williams, N., Humphrey, T., Luangtongkum, T. 2016. Distribution and genetic profiles of Campylobacter in commercial broiler production from breeder to slaughter in Thailand. PLoS One, vol. 11, p. 1-16. https://doi.org/10.1371/journal.pone.0149585 DOI: https://doi.org/10.1371/journal.pone.0149585

Quintana-Hayashi, M. P., and Thakur, S. 2012. Longitudinal study of the persistence of antimicrobial-resistant Campylobacter strains in distinct swine production systems on farms, at slaughter, and in the environment. Appl. Environ. Microbiol., vol. 78, p. 2698-2705. https://doi.org/10.1128/AEM.07723-11 DOI: https://doi.org/10.1128/AEM.07723-11

Sánchez, L., Melero, B., Jaime, I., Hänninen, M. L., Rossi, M., Rovira, J. 2017. Campylobacter jejuni survival in a poultry processing plant environment. Food Microbiol., vol. 65, p. 185-192. https://doi.org/10.1016/j.fm.2017.02.009 DOI: https://doi.org/10.1016/j.fm.2017.02.009

Karki, A. B., Marasini, D., Oakey, C. K., Mar, K. Fakhr, M. K. 2018. Campylobacter coli from retail liver and meat products is more aerotolerant than Campylobacter jejuni. Front. Microbiol., vol. 9, no. 2, p. 2951. https://doi.org/10.1111/j.1863-2378.2012.01509.x DOI: https://doi.org/10.3389/fmicb.2018.02951

Sasaki, Y., Maruyama, N., Zou, B., Haruna, M., Kusukawa, M., Murakami, M., Asai, T., Tsujiyama, Y., Yamada, Y. 2013. Campylobacter cross-contamination of chicken products at an abattoir. Zoonoses Public Health, vol. 60, p. 134-140. https://doi.org/10.1111/j.1863-2378.2012.01509.x DOI: https://doi.org/10.1111/j.1863-2378.2012.01509.x

Varela, N. P., Friendship, R. M., Dewey, C. E. 2007. Prevalence of Campylobacter spp isolated from grower-finisher pigs in Ontario. Can. Vet. J., vol. 48, no. 5, p. 515-517.

Vidal, A. B., Davies, R. H., Rodgers, J. S., Ridley, A., Clifyon, F. 2014. Epidemiology and control of Campylobacter in modern broiler production. In Sheppard, S. K. Campylobacter Ecology and Evolution. Norfolk, UK : Caister Academic Press, 360 p. ISBN: 978-1-908230-36-2.

WHO. 2020. A report about Campylobacter. Available online: https://www.who.int/news-room/fact-sheets/detail/campylobacter.

Wideman, N., Bailey, M., Bilgili, S., Thippareddi, H., Wang, L., Bratcher, C., Sanchez, M. 2015. Evaluating best practices for Campylobacter and Salmonella reduction in poultry processing plants. Poult. Sci., vol. 95, no. 2, p. 306-315. https://doi.org/10.3382/ps/pev328 DOI: https://doi.org/10.3382/ps/pev328

Wieczorek, K., Denis, E., Osek, J. 2015. Comparative analysis of antimicrobial resistance and genetic diversity of Campylobacter from broilers slaughtered in Poland. Int. J. Food Microbiol., vol. 210, p. 24-32. https://doi.org/10.1016/j.ijfoodmicro.2015.06.006 DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.06.006

Zhao, C., Beilei, G. E., De Villena, J., Sudler, R., Yeh, E., Zhao, S., White, D. G., Wagner, D., Meng, J. 2001. Prevalence of Campylobacter spp., Escherichia coli and Salmonella serovars in retail chicken, turkey, pork and beef from the greater Washington D. C. Area. Appl. Environ. Microbiol., vol. 67, no. 12, p. 5431-5435. https://doi.org/10.1128/AEM.67.12.5431-5436.2001 DOI: https://doi.org/10.1128/AEM.67.12.5431-5436.2001

Published

2020-09-28

How to Cite

Yushina, Y., Bataeva, D., Makhova, A., & Zayko, E. (2020). Prevalence of Campylobacter spp. in a poultry and pork processing plants. Potravinarstvo Slovak Journal of Food Sciences, 14, 815–820. https://doi.org/10.5219/1422