Evaluation of the adaptogenic propertries of the Quark product enriched with probiotics, polyphenols and vitamins
DOI:
https://doi.org/10.5219/1156Keywords:
curd product, transglutaminase, polyphenols, vitamins, probiotics, LF-EMF, ratAbstract
The aim of the study is to evaluate protective properties of the quark product manufactured with transglutaminase and enriched with probiotics, oligomerous proanthocyanidines and vitamins; the biological experiment on the growing laboratory Wistar stock rats has been carried out. The rats of two from three groups subjected within 21 days to the effect of low-frequency weak variable magnetic field received in semi-synthetic diet composition extra experimental and control samples of the quark product. The index of feed intake and the rats’ body mass growth was registered within 32 days. At the end of the experiment blood serum biochemical index was evaluated. It was revealed that the animals consuming the experimental product substantially gained the mass before the effect (gain from the 1st up to 10th days made up 12%) as well as after effect (gain from 11th up to 32nd days – 10.3%); upon completion of the experiment the gains of these animals exceeded the gains of the rats consuming the control product by more than 28%. The experiment revealed the lipolipedemic and hypoglycemic effect of the experimental quark product that has been evidenced by the significant reduction of cholesterol (by more than 20%), glucose (up to 40%) in the rats’ blood serum. On administration of the experimental dairy product in the animals’ diet subjected to the impact of low-frequency weak magnetic field the effect of the broken balance recovery in antioxidant/pro-oxidant system was observed due to reduction of pro-oxidant load at the enzymatic as well as low molecular links of the antioxidant system. The identified antioxidant and adaptogenic effect of the developed dairy product promoting to reduce the intensity of free-radical oxidation at the impact of low-frequency electromagnetic field on the body make it possible recommend it in dietotherapy for correction of antioxidant/pro-oxidant status.
Downloads
Metrics
References
Beers, R. F. Jr., Sizer, I. W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., vol. 195, no. 1, p.133-140. DOI: https://doi.org/10.1016/S0021-9258(19)50881-X
Brazhe, N. A., Baizhumanov, A. A., Parshina, E. Y. 2014. Studies of the blood antioxidant system and oxygen-transporting properties of human erythrocytes during 105-day isolation. Human Physiology, vol. 40, no. 7, p. 804-809. https://doi.org/10.1134/S0362119714070020 DOI: https://doi.org/10.1134/S0362119714070020
Gatellier, P., Mercier, Y., Renerre, M. 2004. Effect of diet finishing mode (pasture or mixed diet) on antioxidant status of charolais bovine meat. Meat Science, vol. 67, no. 3, p. 385-394. https://doi.org/10.1016/j.meatsci.2003.11.009 DOI: https://doi.org/10.1016/j.meatsci.2003.11.009
Grabowska, M., Wawrzyniak, D., Rolle, K., Chomczyński, P., Oziewicz, S., Jurga, S., Barciszewski, J. 2019. Let food be your medicine: nutraceutical properties of lycopene. Food Funct., vol. 10, no. 6, p. 3090-3102. https://doi.org/10.1039/c9fo00580c DOI: https://doi.org/10.1039/C9FO00580C
Hardy, H., Harris, J., Lyon, E., Beal, J., Foey, A. D. 2013. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and immunopathology. Nutrients, vol. 5, no. 6, p. 1869-1912. https://doi.org/10.3390/nu5061869 DOI: https://doi.org/10.3390/nu5061869
Hybertson, B. M., Gao, B., Bose, S. K., McCord, J. M. 2011. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol. Aspects Med., vol. 32, no. 4-6, р. 234-246. https://doi.org/10.1016/j.mam.2011.10.006 DOI: https://doi.org/10.1016/j.mam.2011.10.006
Chernukha, I. M., Fedulova, L. V., Kotenkova, E. A., Takeda, S., Sakata, R. 2018. Hypolipidemic and anti-inflammatory effects of aorta and heart tissues of cattle and pigs in the atherosclerosis rat model. Animal Science Journal, vol. 89, no. 5, p. 784-793. https://doi.org/10.1111/asj.12986 DOI: https://doi.org/10.1111/asj.12986
Il’chenko, G. P., Baryshev, M. G., Tekutskaya, E. E., Shelistov, V. S., Nikitin, A. V. 2017. A Device for Searching for Optimal Alternating Magnetic Field Parameters for the Treatment of Biological Objects. Measurement Techniques, vol. 60, no. 6, p. 632-637 https://doi.org/10.1007/s11018-017-1247-7 DOI: https://doi.org/10.1007/s11018-017-1247-7
Isakov, V. A., Bogdanova, A. A., Bessonov, V. V., Sentsova, T. B., Tutelyan, V. A., Lin, Y., Kazlova, V., Hong, J., Velliquette, R. A. 2018. Effects of multivitamin and multimineral and phitonutrients supplementation on nutrient status and biomarkers of heart health risk in Russian population: a randomized, double-blinded, placebo controlled study. Nutrients, vol. 10, no. 2, p. E120. https://doi.org/10.3390/nu10020120 DOI: https://doi.org/10.3390/nu10020120
ISO 2446:2008. Milk - Determination of fat content.
ISO 8968-1:2014. Milk and milk products - Determination of nitrogen content - part 1: Kjeldahl principle and crude protein calculation.
ISO 20128:2006. Milk products - Enumeration of presumptive Lactobacillus acidophilus on a selective medium - Colony-count technique at 37 degrees C.
Iwase, T., Tajima, A., Sugimoto, S., Okuda, K., Hironaka, I., Kamata, Y., Takada, K., Mizunoe, Y. 2013. A simple assay for measuring catalase activity: a visual approach. Scientific reports, vol. 3, p. 3081. https://doi.org/10.1038/srep03081 DOI: https://doi.org/10.1038/srep03081
Kang, S., Lim, Y., Kim, Y. J., Jung, E. S., Suh, D. H., Lee, C. H., Park, E., Hong, J., Velliquette, R. A., Kwon, J., Rim, J. Y. 2019. Multivitamin and mineral supplementations containing phitonutrients scavenges reactive oxygen species in healthy subjects: a randomized, double-blinded, placebo-controlled trial. Nutrients, vol. 11, no. 1, p. E101. https://doi.org/10.3390/nu11010101 DOI: https://doi.org/10.3390/nu11010101
Karamova, N. S., Khabibullin, R. E. 2013. Antiradical properties of lactobacillus acidophilus n.v.ep. 317/402 in vitro. Bulletin of Kazan Technological University, vol. 23, p. 127-129. (In Russian)
Kim, H. S., Chae, H. S., Jeong, S. G., Ham, J. S., Im, S. K., Ahn, C. N., Lee, J. M. 2005. In vitro Antioxidative Properties of Lactobacilli. Asian-Australasian Journal of Animal Sciences, vol. 19, no. 2, р. 262-265. https://doi.org/10.5713/ajas.2006.262 DOI: https://doi.org/10.5713/ajas.2006.262
Kodentsova, V. M., Vrzhesinskaya, O. A., Mazo, V. K. 2013. Vitamins and oxidative stress. Problems of nutrition, vol. 3, р. 11-18. (In Russian)
Kovarovič, J., Bystrická, J., Fehér, A., Lenková, M. 2017. Evaluation and comparison of bioactive substances in selected species of the genus Allium. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 702-708. https://doi.org/10.5219/833 DOI: https://doi.org/10.5219/833
Lin, M. Y., Chang, F. J. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive Diseases and Sciences, vol. 45, no. 8, р. 1617-1622. https://doi.org/10.1023/A:1005577330695 DOI: https://doi.org/10.1023/A:1005577330695
Marklund, S., Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., vol. 47, no. 3, p. 469-543. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x DOI: https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
Martínez-Sámano, J., Flores-Poblano, A., Verdugo-Díaz, L., Juárez-Oropeza, M. A., Torres-Durán, P. V. 2018. Extremely low frequency electromagnetic field exposure and restraint stress induce changes on the brain lipid profile of Wistar rats. BMC Neurosci., vol. 19, no. 1, p. 31. https://doi.org/10.1186/s12868-018-0432-1 DOI: https://doi.org/10.1186/s12868-018-0432-1
Menshchikova, E. B., Lankin, V. Z., Zenkova, N. K. Bondar, I. A., Krugovykh, N. F., Trufakin, V. A. 2006. Oxidative stress. Prooxidants and antioxidants. Moscow, Russia : Slovo, 553 p. ISBN 5-900228-55-Х. (In Russian)
Merola, E. T., Catherman, A. D., Yehl, J. B., Strein, T. G. 2009. Determination of total antioxidant capacity of commercial beverage samples by capillary electrophoresis via inline reaction with 2, 6-dichlorophenolindophenol. J. Agric. Food Chem., vol. 57, no. 15, р. 6518-6523. https://doi.org/10.1021/jf901214r DOI: https://doi.org/10.1021/jf901214r
Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., Foyer, C. H. 2011. Glutathione. The Arabidopsis Book, vol. 9, no. 1, p. 2-32. https://doi.org/10.1199/tab.0142 DOI: https://doi.org/10.1199/tab.0142
Paglia, D. E., Valentina, W. N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., vol. 70, p. 158-169.
Tarko, T., Duda-Chodak, A., Semik, D. Nycz, M. 2015. The use of fruit extracts for production of beverages with high antioxidative activity. Potravinarstvo Slovak Journal of Food Sciences, vol. 9, no. 1, p. 280-283. https://doi.org/10.5219/480 DOI: https://doi.org/10.5219/480
Tomášková, L., Sochor, J., Baroň, M. 2017. Assesment of the antioxidant activity and content of polyphenolic compounds in grapevine seeds. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 71-76. https://doi.org/10.5219/712 DOI: https://doi.org/10.5219/712
Torres-Durán, P. V., Ferreira-Hermosillo, A., Juarez-Oropeza, M. A., Elias-Viñas, D., Verdugo-Diaz, L. 2007. Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF) on serum and liver lipid levels, in the rat. Lipids in Health and Disease, vol. 6, p. 31. https://doi.org/10.1186/1476-511X-6-31 DOI: https://doi.org/10.1186/1476-511X-6-31
Zobkova, Z. S., Fursova, T. P., Zenina, D. V., Fedulova, L. V. 2017. The use of transglutaminase for quark biological value increase. Food industry, vol. 8, p. 16-19. (In Russian)
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.