Evaluation of the adaptogenic propertries of the Quark product enriched with probiotics, polyphenols and vitamins

Authors

  • Zinaida Zobkova All-Russian Scientific Research Institute of Dairy Industry (FSANO VNIMI), Laboratory of new milk products technologies, Lusinovskaya, 35, b.7, 115093, Moscow, Russia, Tel.: +7(499)2367039
  • Liliy Fedulova Federal Research Center for Food Systems after VM Gorbatov of Russian Academy of Sciences, Experimental Clinic-laboratory of biologically active substances, Talalihina st., 26, 109316, Moscow, Russia, Tel.: +7(495)6769211, +7(926)1280052, +7(499)4576569,
  • Tatyana Fursova All-Russian Scientific Research Institute of Dairy Industry (FSANO VNIMI), Laboratory of new milk products technologies, Lusinovskaya, 35, b.7, 115093, Moscow, Russia, Tel.: +7(499)2367039
  • Daria Zenina All-Russian Scientific Research Institute of Dairy Industry (FSANO VNIMI), Laboratory of new milk products technologies, Lusinovskaya st., 35, b.7, 115093, Moscow, Russia, Tel.: +7(499)2367039
  • Elena Kotenkova Federal Research Center for Food Systems after VM Gorbatov of Russian Academy of Sciences, Experimental Clinic-laboratory of biologically active substances, Talalihina st., 26, 109316, Moscow, Russia, Tel.: +7(495)6769211, +7(926)1280052, +7(499)4576569 https://orcid.org/0000-0003-1864-8115

DOI:

https://doi.org/10.5219/1156

Keywords:

curd product, transglutaminase, polyphenols, vitamins, probiotics, LF-EMF, rat

Abstract

The aim of the study is to evaluate protective properties of the quark product manufactured with transglutaminase and enriched with probiotics, oligomerous proanthocyanidines and vitamins; the biological experiment on the growing laboratory Wistar stock rats has been carried out. The rats of two from three groups subjected within 21 days to the effect of low-frequency weak variable magnetic field received in semi-synthetic diet composition extra experimental and control samples of the quark product. The index of feed intake and the rats’ body mass growth was registered within 32 days. At the end of the experiment blood serum biochemical index was evaluated. It was revealed that the animals consuming the experimental product substantially gained the mass before the effect (gain from the 1st up to 10th days made up 12%) as well as after effect (gain from 11th up to 32nd days – 10.3%); upon completion of the experiment the gains of these animals exceeded the gains of the rats consuming the control product by more than 28%. The experiment revealed the lipolipedemic and hypoglycemic effect of the experimental quark product that has been evidenced by the significant reduction of cholesterol (by more than 20%), glucose (up to 40%) in the rats’ blood serum. On administration of the experimental dairy product in the animals’ diet subjected to the impact of low-frequency weak magnetic field the effect of the broken balance recovery in antioxidant/pro-oxidant system was observed due to reduction of pro-oxidant load at the enzymatic as well as low molecular links of the antioxidant system. The identified antioxidant and adaptogenic effect of the developed dairy product promoting to reduce the intensity of free-radical oxidation at the impact of low-frequency electromagnetic field on the body make it possible recommend it in dietotherapy for correction of antioxidant/pro-oxidant status.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Beers, R. F. Jr., Sizer, I. W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., vol. 195, no. 1, p.133-140. DOI: https://doi.org/10.1016/S0021-9258(19)50881-X

Brazhe, N. A., Baizhumanov, A. A., Parshina, E. Y. 2014. Studies of the blood antioxidant system and oxygen-transporting properties of human erythrocytes during 105-day isolation. Human Physiology, vol. 40, no. 7, p. 804-809. https://doi.org/10.1134/S0362119714070020 DOI: https://doi.org/10.1134/S0362119714070020

Gatellier, P., Mercier, Y., Renerre, M. 2004. Effect of diet finishing mode (pasture or mixed diet) on antioxidant status of charolais bovine meat. Meat Science, vol. 67, no. 3, p. 385-394. https://doi.org/10.1016/j.meatsci.2003.11.009 DOI: https://doi.org/10.1016/j.meatsci.2003.11.009

Grabowska, M., Wawrzyniak, D., Rolle, K., Chomczyński, P., Oziewicz, S., Jurga, S., Barciszewski, J. 2019. Let food be your medicine: nutraceutical properties of lycopene. Food Funct., vol. 10, no. 6, p. 3090-3102. https://doi.org/10.1039/c9fo00580c DOI: https://doi.org/10.1039/C9FO00580C

Hardy, H., Harris, J., Lyon, E., Beal, J., Foey, A. D. 2013. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and immunopathology. Nutrients, vol. 5, no. 6, p. 1869-1912. https://doi.org/10.3390/nu5061869 DOI: https://doi.org/10.3390/nu5061869

Hybertson, B. M., Gao, B., Bose, S. K., McCord, J. M. 2011. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol. Aspects Med., vol. 32, no. 4-6, р. 234-246. https://doi.org/10.1016/j.mam.2011.10.006 DOI: https://doi.org/10.1016/j.mam.2011.10.006

Chernukha, I. M., Fedulova, L. V., Kotenkova, E. A., Takeda, S., Sakata, R. 2018. Hypolipidemic and anti-inflammatory effects of aorta and heart tissues of cattle and pigs in the atherosclerosis rat model. Animal Science Journal, vol. 89, no. 5, p. 784-793. https://doi.org/10.1111/asj.12986 DOI: https://doi.org/10.1111/asj.12986

Il’chenko, G. P., Baryshev, M. G., Tekutskaya, E. E., Shelistov, V. S., Nikitin, A. V. 2017. A Device for Searching for Optimal Alternating Magnetic Field Parameters for the Treatment of Biological Objects. Measurement Techniques, vol. 60, no. 6, p. 632-637 https://doi.org/10.1007/s11018-017-1247-7 DOI: https://doi.org/10.1007/s11018-017-1247-7

Isakov, V. A., Bogdanova, A. A., Bessonov, V. V., Sentsova, T. B., Tutelyan, V. A., Lin, Y., Kazlova, V., Hong, J., Velliquette, R. A. 2018. Effects of multivitamin and multimineral and phitonutrients supplementation on nutrient status and biomarkers of heart health risk in Russian population: a randomized, double-blinded, placebo controlled study. Nutrients, vol. 10, no. 2, p. E120. https://doi.org/10.3390/nu10020120 DOI: https://doi.org/10.3390/nu10020120

ISO 2446:2008. Milk - Determination of fat content.

ISO 8968-1:2014. Milk and milk products - Determination of nitrogen content - part 1: Kjeldahl principle and crude protein calculation.

ISO 20128:2006. Milk products - Enumeration of presumptive Lactobacillus acidophilus on a selective medium - Colony-count technique at 37 degrees C.

Iwase, T., Tajima, A., Sugimoto, S., Okuda, K., Hironaka, I., Kamata, Y., Takada, K., Mizunoe, Y. 2013. A simple assay for measuring catalase activity: a visual approach. Scientific reports, vol. 3, p. 3081. https://doi.org/10.1038/srep03081 DOI: https://doi.org/10.1038/srep03081

Kang, S., Lim, Y., Kim, Y. J., Jung, E. S., Suh, D. H., Lee, C. H., Park, E., Hong, J., Velliquette, R. A., Kwon, J., Rim, J. Y. 2019. Multivitamin and mineral supplementations containing phitonutrients scavenges reactive oxygen species in healthy subjects: a randomized, double-blinded, placebo-controlled trial. Nutrients, vol. 11, no. 1, p. E101. https://doi.org/10.3390/nu11010101 DOI: https://doi.org/10.3390/nu11010101

Karamova, N. S., Khabibullin, R. E. 2013. Antiradical properties of lactobacillus acidophilus n.v.ep. 317/402 in vitro. Bulletin of Kazan Technological University, vol. 23, p. 127-129. (In Russian)

Kim, H. S., Chae, H. S., Jeong, S. G., Ham, J. S., Im, S. K., Ahn, C. N., Lee, J. M. 2005. In vitro Antioxidative Properties of Lactobacilli. Asian-Australasian Journal of Animal Sciences, vol. 19, no. 2, р. 262-265. https://doi.org/10.5713/ajas.2006.262 DOI: https://doi.org/10.5713/ajas.2006.262

Kodentsova, V. M., Vrzhesinskaya, O. A., Mazo, V. K. 2013. Vitamins and oxidative stress. Problems of nutrition, vol. 3, р. 11-18. (In Russian)

Kovarovič, J., Bystrická, J., Fehér, A., Lenková, M. 2017. Evaluation and comparison of bioactive substances in selected species of the genus Allium. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 702-708. https://doi.org/10.5219/833 DOI: https://doi.org/10.5219/833

Lin, M. Y., Chang, F. J. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive Diseases and Sciences, vol. 45, no. 8, р. 1617-1622. https://doi.org/10.1023/A:1005577330695 DOI: https://doi.org/10.1023/A:1005577330695

Marklund, S., Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., vol. 47, no. 3, p. 469-543. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x DOI: https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

Martínez-Sámano, J., Flores-Poblano, A., Verdugo-Díaz, L., Juárez-Oropeza, M. A., Torres-Durán, P. V. 2018. Extremely low frequency electromagnetic field exposure and restraint stress induce changes on the brain lipid profile of Wistar rats. BMC Neurosci., vol. 19, no. 1, p. 31. https://doi.org/10.1186/s12868-018-0432-1 DOI: https://doi.org/10.1186/s12868-018-0432-1

Menshchikova, E. B., Lankin, V. Z., Zenkova, N. K. Bondar, I. A., Krugovykh, N. F., Trufakin, V. A. 2006. Oxidative stress. Prooxidants and antioxidants. Moscow, Russia : Slovo, 553 p. ISBN 5-900228-55-Х. (In Russian)

Merola, E. T., Catherman, A. D., Yehl, J. B., Strein, T. G. 2009. Determination of total antioxidant capacity of commercial beverage samples by capillary electrophoresis via inline reaction with 2, 6-dichlorophenolindophenol. J. Agric. Food Chem., vol. 57, no. 15, р. 6518-6523. https://doi.org/10.1021/jf901214r DOI: https://doi.org/10.1021/jf901214r

Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., Foyer, C. H. 2011. Glutathione. The Arabidopsis Book, vol. 9, no. 1, p. 2-32. https://doi.org/10.1199/tab.0142 DOI: https://doi.org/10.1199/tab.0142

Paglia, D. E., Valentina, W. N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., vol. 70, p. 158-169.

Tarko, T., Duda-Chodak, A., Semik, D. Nycz, M. 2015. The use of fruit extracts for production of beverages with high antioxidative activity. Potravinarstvo Slovak Journal of Food Sciences, vol. 9, no. 1, p. 280-283. https://doi.org/10.5219/480 DOI: https://doi.org/10.5219/480

Tomášková, L., Sochor, J., Baroň, M. 2017. Assesment of the antioxidant activity and content of polyphenolic compounds in grapevine seeds. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 71-76. https://doi.org/10.5219/712 DOI: https://doi.org/10.5219/712

Torres-Durán, P. V., Ferreira-Hermosillo, A., Juarez-Oropeza, M. A., Elias-Viñas, D., Verdugo-Diaz, L. 2007. Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF) on serum and liver lipid levels, in the rat. Lipids in Health and Disease, vol. 6, p. 31. https://doi.org/10.1186/1476-511X-6-31 DOI: https://doi.org/10.1186/1476-511X-6-31

Zobkova, Z. S., Fursova, T. P., Zenina, D. V., Fedulova, L. V. 2017. The use of transglutaminase for quark biological value increase. Food industry, vol. 8, p. 16-19. (In Russian)

Published

2019-09-28

How to Cite

Zobkova, Z., Fedulova, L., Fursova, T., Zenina, D., & Kotenkova, E. (2019). Evaluation of the adaptogenic propertries of the Quark product enriched with probiotics, polyphenols and vitamins. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 713–719. https://doi.org/10.5219/1156