In vitro antioxidant potential and inhibitory effect of hydro-ethanolic extract from African black velvet tamarind (Dialium indium) pulp on type 2 diabetes linked enzymes


  • Olakunle Bamikole Afolabi Phytomedicine and Toxicology Laboratory, Biochemistry Unit, Department of Chemical Science, College of Science, Afe-Babalola University. P.M.B 5454, Ado- Ekiti, Ekiti State
  • Omotade Ibidun Oloyede Department of Biochemistry, Ekiti State University, P.M.B 5363, Ado”‘Ekiti
  • Abiodun Ayodele Ojo Department of Chemical Science, College of Science, Afe-Babalola University. P.M.B 5454, Ado- Ekiti, Ekiti State
  • Amos Adeyinka Onansanya Molecular and Biotechnology Laboratory, Biochemistry Unit, Department of Chemical Science, College of Science, Afe-Babalola University. P.M.B 5454, Ado- Ekiti, Ekiti State
  • Shadrach Oludare Agunbiade Nutrition and Food Science Laboratory, Biochemistry Unit, Department of Chemical Science, College of Science, Afe-Babalola University. P.M.B 5454, Ado- Ekiti, Ekiti State
  • Bashir Olaitan Ajiboye Phytomedicine and Toxicology Laboratory, Biochemistry Unit, Department of Chemical Science, College of Science, Afe-Babalola University. P.M.B 5454, Ado- Ekiti, Ekiti State
  • Jonathan Johnson Department of Chemical Science, College of Science, Afe-Babalola University. P.M.B 5454, Ado- Ekiti, Ekiti State
  • Omolara Abosede Peters Department of Chemical Science, College of Science, Afe-Babalola University. P.M.B 5454, Ado- Ekiti, Ekiti State



Type 2 Diabetes, α-amylase, Dialium indium, α-glucosidase, antioxidant


The alarming rate of diabetes mellitus (DM) globally is bothersome and has drawn the search light of researchers on naturally endowed phytonutrients being an alternative in managing the menace. Therefore, the current study was designed to investigate some antioxidant parameters embedded in the extract of Dialium indium (DI) fruit pulp and also, to elucidate its antidiabetic potentials through the inhibition of two key carbohydrate-metabolizing enzymes such as α-amylase and intestinal α-glucosidase. Hydro-ethanolic extract of DI fruit pulp was used for the antioxidants and enzyme inhibitory bioassays through various convectional antioxidant assay methods in vitro. In the results, total phenolic content of the extract had; 6.74 ±3.38 mg GAE.g-1, total flavonoid contents; 0.02 ±0.01 mg QE.g-1 and FRAP; 0.84  ±0.47 mg AAE.g-1 dried sample. Also, there was a marked significant (p <0.05) difference observed in the inhibition of α-amylase and intestinal α-glucosidase by the different concentrations of the extract used in concentration-dependent manner with their different EC50. The inhibition demonstrated against these two carbohydrate metabolizing enzymes possibly could be through the embedded antioxidant potentials of the fruit pulp and this if properly harnessed, it could be helpful in the management of type 2 diabetes.


Download data is not yet available.


Metrics Loading ...


Ademiluyi, A. Oboh, G. 2013. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α -glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology, vol. 65, p. 305-309. PMid:22005499 DOI:

Afolabi O. B, Oloyede O. I, Obajuluwa A. I, Adewale O. B, Olayide I. I, Balogun B. D, Fadugba A. 2018a. Antioxidant properties and inhibitory potentials of different solvent-fractions of Dialium indium pulp (African Black velvet tamarind) against Fe2+- induced oxidative stress in rat tissues - In vitro. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 70-78. DOI:

Afolabi, O. B., Oloyede, O. I. 2014. Antioxidant properties of the extracts of Talinum triangulare and its Effect on Antioxidant enzymes in tissue homogenate of swiss albino rat. Toxicology International, vol. 21, no. 3, p. 307-313. PMid:25948971 DOI:

Afolabi, O. B., Oloyede, O. I., Olayide, I. I., Obafemi, T. O., Awe, J. O., Afolabi, B. A., Onikani, S. A. 2015. Antioxidant enhancing ability of different solvents extractable components of Talinum traingulare in some selected tissue homogenates of albino rat-in vitro. Journal of Applied Pharmaceutical Science, vol. 5, no. 9, p. 56-61. DOI:

Afolabi, O. B., Oloyede, O. I., Agunbiade, S. O. 2018b. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress. Journal of Integrative Medicine, Epub ahead of print. DOI:

Bao, J., Cai, Y., Sun, M., Wang, G., Corke, H. 2005. Anthocyanins, flavonols and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. Journal of Agricultural and Food Chemistry, vol. 53, no. 6, p. 2327-2332. PMid:15769176 DOI:

Beverley, B., Eschwège, E. 2003. The diagnosis and classification of diabetes and impaired glucose tolerance. In John, C. P. et al. Textbook of Diabetes. New Jersey : Wiley-Blackwell, p. 2.1-2.11. ISBN 978-0632059157.

Bravo, L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, vol. 56, no. 11, p. 317-333. PMid:9838798 DOI:

Dave, G. S., Kalia, K. 2007. Hyperglycemia induced oxidative stress in type-1 and type-2 diabetic patients with and without nephropathy. Cellular and Molecular Biology, vol. 53, no. 5, p. 68-78. PMid:17543235

Dawra, R. K., Makkar, H. P. 1988. Singh B. Protein-binding capacity of micro quantities of tannins. Analytical Biochemistry, vol. 170, no. 1, p. 50-53. DOI:

Erasto, P., Adebola, P. O., Grierson, D. S., Afolayan, A. J. 2005. An ethnobotanical study of the plants used for the treatment of diabetes in the eastern Cape province, South Africa. African Journal of Biotechnology, vol. 4, p. 1458-1460.

Gruenwald, J., Freder, J., Armbruester, N. 2010. Cinnamon and health. Critical Reviews in Food Science and Nutrition, vol. 50, no. 9, p. 822-834. PMid:20924865 DOI:

Gyamfi, M. A., Yonamine, M., Aniya, Y. 1999. Free radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally induced liver injuries. General Pharmacology, vol. 32, no. 6, p. 661-667. DOI:

Halliwell, B., Gutteridge, J. M. 1981. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Letters, vol. 128, no. 2, p. 347-352. DOI:

Hilary, K., Ronald, E. A., William, H. H. 1998. Global burden of diabetes 1995-2005. Prevalence, numerical estimates and projections. Diabetes care, vol. 21, no. 9, p. 141-143. DOI:

Hung, H. Y., Qian, K., Morris-Natschke, S. L., Hsu, C. S., Lee, K. H. 2012. Recent discovery of plant-derived anti-diabetic natural products. Natural Product Reports, vol. 29, no. 5, p. 580-606. PMid:22491825 DOI:

Inga, P., Mark, I. M., Cecilia, M. L. 2008. Type 2 diabetes: new genes, new understanding. Trends in Genetics, vol. 24, no. 12, p. 613-621. PMid:18952314 DOI:

Inglett, G. E., Chen, D. 2011. Contents of phenolics and flavonoids and antioxidant activities in skin, pulp, and seeds of miracle fruit. Journal of Food Science, vol. 76, no. 3, p. 479-482. PMid:21535817 DOI:

Jalapure, S. S., Patil, M. B., Pai, A., Salahuddin, M. D. 2004. Anti-diabetics activity of Cassia auriculata seed in alloxan induced diabetes rats. Nigerian Journal of Natural Products and Medicine, vol. 8, p. 22-23. DOI:

Jo, S. H., Ka, E. H., Lee, H. S., Apostolidis, E., Jang, H. D., Kwon, Y. I. 2009. Comparison of antioxidant potential and rat intestinal α-glucosidases inhibitory activities of quercetin, rutin, and isoquercetin. International Journal of Applied Research in Natural Products, vol. 2, p. 52-60.

Krentz, A. J., Bailey, C. J. 2005. Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drug, vol. 65, no. 3, p. 385-411. DOI:

Kwon, Y. I., Apostolidis, E., Kim, Y. C., Shetty, K. 2007. Health benefits of traditional corn, beans and pumpkin: In vitro studies for hyperglycemia and hypertension management. Journal of Medicinal Food, vol. 10, no. 2, p. 266-275. PMid:17651062 DOI:

Leszek, C., László, B., Svetlana, B., Agata, B., Jan, B., Katarzyna C, Marek H., Andrej J., Mladen K., Nebojsa L., Emil M., Dario R., Gabriela R., Tsvetalina T., Tamás V., Bogumił W. and Nadia Z. 2014. Self-Monitoring of Blood Glucose in Diabetes: From Evidence to Clinical Reality in Central and Eastern Europe - Recommendations from the International Central-Eastern European Expert Group. Diabetes Technology and Therapeutics, vol. 16, no. 7, p. 460-475. PMid:24716890 DOI:

Madhusudhan, T., Kirankumar, H. 2015. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian Journal of Pharmacology, vol. 47, no. 4, p. 425-429. PMid:26288477 DOI:

Materska, M., Perucka, I. 2005. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruits (Capsicum annuum L.). Journal of Agricultural and Food Chemistry, vol. 53, no. 5, p. 1730-1758. PMid:15740069 DOI:

McCue, P., Kwon, Y. I., Shetty, K. 2005. Anti-diabetic and antihypertensive potential of sprouted and solid-state bioprocessed soybean. Asia Pacific Journal of Clinical Nutrition, vol. 14, no. 2, p. 145-152. PMid:15927931

Mercocci, L., Marguire, J. J., Droy-Lefaiz, M. T., Parker, L. 1994. The nitric oxide-scavenging properties of Ginko biloba extract EGB 761. Biochemical and Biophysical Research Communications, vol. 201, no. 2, p. 748-755. DOI:

Nishikawa, T., Edelstein, D., Du, X. L. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, vol. 404, no. 6779, p. 787-790. PMid:10783895 DOI:

Nwaukwu, I. A, Ikechi, N. C. 2012. Biochemical Changes Induced by the Effect of Six Pathogenic Fungi on Dialium guineense: Black Velvet Edible Fruit. IOSR International Journal of Pharmacy and Biological Sciences, vol. 2, no. 4, p. 20-24. DOI:

Obafemi, T. O., Onasanya, A., Olaoye, O. A., Afolabi, O.B., Awe, O. J, Anadozie, S. O., Ojo, O. A., Adedeji, E. 2016. In vitro Antioxidant Activity and High Performance Liquid Chromatography (HPLC) Analysis of methanolic extract of Platycerium angolense. International Journal of Pharmacognosy and Phytochemical Research, vol. 8, no.9, p. 1497-1502.

Oberley, L. W. 1988. Free radicals and diabetes. Free Radical Biology and Medicine, vol. 5, no. 2, p. 113-124. DOI:

Oyedemi, S. O., Oyedemi, B. O., Ijeh, I. I., Ohanyerem, P. M. E., Coopoosamy, R. M., Aiyegoro, O. A. 2017. Alpha-amylase inhibition and antioxidative Capacity of some antidiabetic plants used by the traditional healers in southeastern Nigeria. The Scientific World Journal, vol. 2017, p. 1-11. PMid:28367491 DOI:

Porte, D., Kahn, S. E. 2001. Beta-cell dysfunction and failure in type 2 diabetes: Potential mechanisms. Diabetes, vol. 1, p. 160-116. DOI:

Pulido, R., Bravo, L., Saura-Calixto, F. 2000. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, vol. 48, no. 8, p. 3396-3402. PMid:10956123 DOI:

Rhabasa-Lhoret, R., Chiasson, J. L. 2004. Alpha-glucosidase inhibition. In Defronzo, R. A. et al. International textbook of diabetes mellitus. 3rd ed. London, UK : John Wiley, 2070 p. ISBN 9780471486558.

Robertson, R. P., Harmon, J. S. 2007. Pancreatic islet β-cell and oxidative stress: the importance of glutathione peroxidase. FEBS Letters, vol. 581, no. 19, p. 3743-3748. PMid:17433304 DOI:

Shai, L. J., Masoko, P., Mokgotho, M. P., Magano, S. R., Mogale, A. M., Boaduo, N., Eloff, J. N. 2010. Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in phalaborwa, South Africa. South African Journal of Botany, vol. 76, no. 3, p. 465-470. DOI:

Shim, Y. J., Doo, H. K., Ahn, S. Y., Kim, Y. S., Seong, J. K., Park, I. S., Min, B. H. 2003. Inhibitory effect of aqueous extract from the gal of Rhuz chinesis on alpha-glucosidase activities and postprandial blood glucose. Journal of Ethnopharmacology, vol. 85, no. 2-3, p. 283-287. DOI:

Singh, S. K., Rai, P. K., Jaiswal, D., Watal, G. 2007. Evidence-based critical evaluation of glycemic potential of Cynodon dactylon. Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 4, p. 415-420. PMid:18955211 DOI:

Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Packer, L. Methods in enzymology. Oxidants and antioxidants Part A. San Diego, California : Academic Press, p.152-178. ISBN 978-12-182200-2. DOI:

Stein, S. A., Lamos, E. M., Davis, S. N. 2013. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opinion on Drug Safety, vol. 12, no. 2, p. 153-175. PMid:23241069 DOI:

Zar, J. H. 1984. Biostatistical analysis. 2nd ed. USA : Prentice-Hall Inc, 718p. ISBN 9780130779250.

Zimmet, P., Alberti, K. G., Shaw, J. 2001. Global and societal implications of the diabetesepidemic. Nature, vol. 414, no. 6865, p. 782-787. PMid:11742409 DOI:

Ziping, X., Weihua, F., Jiankang, C., Dongdong, C., Weibo, J. 2009. Antioxidant activity and total phenolic contents in peel and pulp of Chinese Jujube (Ziziphus jujuba Mill) fruits. Journal of Food Biochemistry, vol. 33, no. 5, p. 613-629. DOI:




How to Cite

Afolabi, O. B., Oloyede, O. I., Ojo, A. A., Onansanya, A. A., Agunbiade, S. O., Ajiboye, B. O., Johnson, J. ., & Peters, O. A. (2018). In vitro antioxidant potential and inhibitory effect of hydro-ethanolic extract from African black velvet tamarind (Dialium indium) pulp on type 2 diabetes linked enzymes. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 413–421.