Co-administration of amygdalin and deoxynivalenol disrupted regulatory proteins linked to proliferation of porcine ovarian cells in vitro

Authors

  • Marek Halenár Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Tr. A. Hlinku 2, 949 76 Nitra
  • Marí­na Medveďová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Tr. A. Hlinku 2, 949 76 Nitra
  • Simona Baldovská Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Tr. A. Hlinku 2, 949 76 Nitra
  • Katarí­na Michalcová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Tr. A. Hlinku 2, 949 76 Nitra
  • Adriana Kolesárová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/791

Keywords:

amygdalin, deoxynivalenol, ovarian cell, proliferation, apoptosis

Abstract

Deoxynivalenol (DON) represents one of the most prevalent trichothecene mycotoxin produced by Fusarium species, causing economic and health impacts. On the other hand, amygdalin has been demonstrated to possess both prophylactic and curative properties, thus it has been used as a traditional drug because of its wide range of medicinal benefits, including curing or preventing cancer, relieving fever, suppressing cough, and quenching thirst. The aim of this in vitro study was to evaluate potential effects of natural product amygdalin combined with mycotoxin deoxynivalenol (DON) on the key regulators of cell proliferation and apoptosis in porcine ovarian granulosa cells. Ovarian granulosa cells were incubated for 24h with amygdalin (1, 10, 100, 1000, 10 000 μg.mL-1) combined with deoxynivalenol (1 μg.mL-1), while the control group remained untreated. The presence of proliferative (cyclin B1, PCNA) and apoptotic markers (caspase-3) in porcine ovarian granulosa cells after amygdalin treatment (1, 10, 100, 1000, 10 000 μg.mL-1) combined with deoxynivalneol (1 μg.mL-1) was detected by immunocytochemistry. The presence of proliferative (cyclin B1, PCNA) and apoptotic markers (caspase-3) in porcine ovarian granulosa cells was detected by immunocytochemistry. Co-administration of amygdalin plus DON significantly (p <0.05) increased the number of granulosa cells containing cyclin B1 and PCNA at all tested concetrations, when compared to control. However, percentage of granulosa cells containing major apoptotic marker caspase-3 did not differ after co-administration of amygdalin and DON. In summary, results form this in vitro study indicate that co-exposure of amygdalin and deoxynivalenol  may act to stimulate proliferation-associated peptides in porcine ovarian granulosa cells, and thus alter cell proliferation and normal follicular development.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alassane-Kpembi, I., Puel, O., Oswald, I. P. 2015. Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Archives of Toxicology, vol. 89, no. 8, p. 1337-1346. https://doi.org/10.1007/s00204-014-1309-4 PMid:25033990 DOI: https://doi.org/10.1007/s00204-014-1309-4

Arunachalam, C., Doohan, F. M. 2013. Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicology Letters, vol. 217, no. 2, p. 149-158. https://doi.org/10.1016/j.toxlet.2012.12.003 PMid:23274714 DOI: https://doi.org/10.1016/j.toxlet.2012.12.003

Bromley, J., Hughes, B. G., Leong, D. C., Buckley, N. A. 2005. Life-threatening interaction between complementary medicines: cyanide toxicity following ingestion of amygdalin and vitamin C. Annals of Pharmacotherapy, vol. 39, no. 9, p. 1566-1569. https://doi.org/10.1345/aph.1E634 PMid:16014371 DOI: https://doi.org/10.1345/aph.1E634

Caloni, F., Ranzenigo, G., Cremonesi, F., Spicer, L. J. 2009. Effects of trichothecene, T-2 toxin, on proliferation and steroid production by GCs. Toxicon, vol. 54, no. 3, p. 337-344. https://doi.org/10.1016/j.toxicon.2009.05.002 PMid:19463844 DOI: https://doi.org/10.1016/j.toxicon.2009.05.002

Cortinovis, C., Caloni F., Schreiber N. B., Spicer L. J. 2014. Effects of fumonisin B1 alone and combined with deoxynivalenol or zearalenone on porcine granulosa cell proliferation and steroid production. Theriogenology, vol. 81, no. 8, p. 1042-1049. https://doi.org/10.1016/j.theriogenology.2014.01.027 PMid:24576714 DOI: https://doi.org/10.1016/j.theriogenology.2014.01.027

Dänicke, S. 2002. Fusarium toxins in animal nutrition (Fusarium-toxine in der Tierernährung). Grosstierpraxis, vol. 3, p. 5-18.

Denault, J. B., Salvesen, G. S. 2008. Apoptotic caspase activation and activity. Methods in Molecular Biology, vol. 414, p. 191-220. https://doi.org/10.1007/978-1-59745-339-4_15 DOI: https://doi.org/10.1007/978-1-59745-339-4_15

Deng, Y., Guo, Z. G., Zeng, Z. L., Wang, Z. 2002. Studies on the pharmacological effects of saffron (Crocus sativus L.). Zhongguo Zhong Yao Za Zhi, vol. 27, no. 8, p. 565-568. PMid:12776492

Desjardins, A. E. 2009. From yellow rain to green wheat: 25 years of trichothecene biosynthesis research. Journal of Agricultural and Food Chemistry, vol. 57, no. 11, p. 4478-4484. https://doi.org/10.1021/jf9003847 PMid:19385595 DOI: https://doi.org/10.1021/jf9003847

Fukuda, T., Ito, H., Mukainaka, T., Tokuda, H., Nishino, H., Yoshida, T. 2003. Anti-tumor promoting effect of glycosides from Prunus persica seeds. Biological and Pharmaceutical Bulletin, vol. 26, no. 2, p. 271-273. https://doi.org/10.1248/bpb.26.271 PMid:12576693 DOI: https://doi.org/10.1248/bpb.26.271

Halenár, M., Medveďová, M., Maruniaková, N., Kolesárová, A. 2015. Assessment of a potential preventive ability of amygdalin in mycotoxin-induced ovarian toxicity. Journal of Environmental Science and Health B, vol. 50, no. 6, p. 411-416. https://doi.org/10.1080/03601234.2015.1011956 PMid:25844862 DOI: https://doi.org/10.1080/03601234.2015.1011956

Howard-Ruben, J., Miller, N. J. 1984. Unproven methods of cancer management. Part II: Current trends and implications for patient care. Oncology Nursing Forum, vol. 11, no.1, p. 67-73. PMid:6318190

Chandler, R. F., Anderson, L. A., Phillipson, J. D. 1984. Laetrile in perspective. Canadian Pharmacists Journal, vol. 117, p. 517-520.

Chang, H. K., Shin, M. S., Yang, H. Y., Lee, J. W., Kim, Y. S., Lee, M. H., Kim, J., Kim, K. H., Kim, C. J. 2006. Amygdalin Induces Apoptosis through Regulation of Bax and Bcl-2 Expressions in Human DU145 and LNCaP Prostate Cancer Cells. Biological and Pharmaceutical Bulletin, vol. 29, no. 8, p. 1597-1602. https://doi.org/10.1248/bpb.29.1597 PMid:16880611 DOI: https://doi.org/10.1248/bpb.29.1597

Kolesárová, A., Sirotkin, A. V., Kováčik, J. 2008. Endocrine and intracellular mechanisms of sexual gestation of gilts (Endokrinné a vnútrobunkové mechanizmy pohlavného dospievania prasničiek). 1st ed. Nitra, Slovakia : Slovak University of Agriculture, p. 131. ISBN 978-80-552-0109-2.

Kolesarova, A., Capcarova, M., Maruniakova, N., Lukac, N., Ciereszko, R. E., Sirotkin, A. V. 2012. Resveratrol Inhibits Reproductive Toxicity Induced by Deoxynivalenol. Journal of Environmental Science and Health Part B, vol. 47, no. 9, p. 1329-1334. https://doi.org/10.1080/10934529.2012.672144 PMid:22540658 DOI: https://doi.org/10.1080/10934529.2012.672144

Kolesarova, A., Sirotkin, A. V., Mellen, M., Roychoudhury, S. 2015. Possible intracellular regulators of female sexual maturation. Physiological research, vol. 64, no. 3, p. 379-386. PMid:25536325 DOI: https://doi.org/10.33549/physiolres.932838

Kovacova, V., Omelka, R., Sarocka, A., Sranko, P., Adamkovicova, M., Toman, R., Halenar, M., Kolesarova, A., Martiniakova, M. 2016. Potravinarstvo, vol. 10, no. 1, p. 393-399. https://doi.org/10.5219/625 DOI: https://doi.org/10.5219/625

Larsen, J. C., Hunt, J., Perrin, I., Ruckenbauer, P. 2004. Workshop on trichothecenes with a focus on DON: summary report. Toxicology Letters, vol. 153, no. 1, p. 1-22. https://doi.org/10.1016/j.toxlet.2004.04.020 PMid:15342076 DOI: https://doi.org/10.1016/j.toxlet.2004.04.020

Lee, H. M., Moon, A. 2016. Amygdalin regulates apoptosis and adhesion in Hs578T Triple-Negative Breast Cancer Cells. Biomolecules & Therapeutics (Seoul), vol. 24, no. 1, p. 62-66. https://doi.org/10.4062/biomolther.2015.172 PMid:26759703 DOI: https://doi.org/10.4062/biomolther.2015.172

Makarević, J., Rutz, J., Juengel, E., Kaulfuss, S., Reiter, M., Tsaur, I., Bartsch, G., Haferkamp, A., Blaheta, R. A. 2014. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyklin A and cdk2. PLoS ONE, vol. 9, no. 8, p. 1-9. https://doi.org/10.1371/journal.pone.0105590 PMid:25136960 DOI: https://doi.org/10.1371/journal.pone.0105590

Makarević, J., Juengel, E., Tsaur, I., Borgmann, H., Nelson, K., Thomas, C., Bartsch, G., Haferkamp, A., Blaheta, R. A. 2016. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro. Life Sciences, vol. 147, p. 137-142. https://doi.org/10.1016/j.lfs.2016.01.039 PMid:26827990 DOI: https://doi.org/10.1016/j.lfs.2016.01.039

Maruniakova, N., Kadasi, A., Sirotkin, A. V., Bulla, J., Kolesarova, A. 2014. T-2 toxin and its metabolite HT-2 toxin combined with insuin-like growth factor-I modify progesterone secretion by porcine ovarian granulosa cells. Journal of Environmental Science and Health Part A, vol. 49, no. 4, p. 404-409. https://doi.org/10.1080/10934529.2014.854650 PMid:24345238 DOI: https://doi.org/10.1080/10934529.2014.854650

Medvedova, M., Kolesarova, A., Capcarova, M., Labuda, R., Sirotkin, A. V., Kovacik, J., Bulla, J. 2011. The effect of deoxynivalenol on the secretion activity, proliferation and apoptosis of porcine ovarian granulosa cells in vitro. Journal of Environmental Science and Health, vol. 46, no.3, p. 213-219. https://doi.org/10.1080/03601234.2011.540205 PMid:21442537 DOI: https://doi.org/10.1080/03601234.2011.540205

Moertel, C. G., Fleming, T. R., Rubin, J. A. 1982. Clinical trial of amygdalin in the treatment of human cancer. The New England Journal of Medicine, vol. 306, no. 4, p. 201-206. https://doi.org/10.1056/NEJM198201283060403 PMid:7033783 DOI: https://doi.org/10.1056/NEJM198201283060403

Naryzhny, S. N., Lee, H. 2001. Protein profiles of the Chinese hamster ovary cells in the resting and proliferating stages. Electrophoresis, vol. 22, no. 9, p. 1764-1775. https://doi.org/10.1002/1522-2683(200105)22:9<1764::AID-ELPS1764>3.0.CO;2-V DOI: https://doi.org/10.1002/1522-2683(200105)22:9<1764::AID-ELPS1764>3.0.CO;2-V

Oyewole, O. I., Olayinka, E. T. 2009. Hydroxocobalamin (vitb12a) effectively reduced extent of cyanide poisoning arising from oral amygdalin ingestion in rats. Journal of Toxicology and Environmental Health Sciences, vol. 1, no. 1, p. 8-11.

Parent-Massin, D. 2004. Haematotoxicity of trichothecenes. Toxicology Letters, vol. 153, no. 1, p. 75-81. https://doi.org/10.1016/j.toxlet.2004.04.024 PMid:15342083 DOI: https://doi.org/10.1016/j.toxlet.2004.04.024

Pestka, J. J., Zhou, H. R., Moon, Y., Chung, Y. J. 2004. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicology Letters, vol. 153, no. 1, p. 61-73. https://doi.org/10.1016/j.toxlet.2004.04.023 PMid:15342082 DOI: https://doi.org/10.1016/j.toxlet.2004.04.023

Pestka, J. J., Smolinski, A.T. 2005. Deoxynivalenol: toxicology and potential effects on humans. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, vol. 8, no. 1, p. 39-69. https://doi.org/10.1080/10937400590889458 PMid:15762554 DOI: https://doi.org/10.1080/10937400590889458

Porter, A. G., Jänicke, R. U. 1996. Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation, vol. 6, no. 2, p. 99-104. https://doi.org/10.1038/sj.cdd.4400476 PMid:10200555 DOI: https://doi.org/10.1038/sj.cdd.4400476

Petro, E. M., Leroy, J. L., Van Cruchten, S. J., Covaci, A., Jorssen, E. P., Bols, P. E. 2012. Endocrine disruptors and female fertility: focus on (bovine) ovarian follicular physiology. Theriogenology, vol. 78, no. 9, p. 1887-1900. https://doi.org/10.1016/j.theriogenology.2012.06.011 PMid:22925646 DOI: https://doi.org/10.1016/j.theriogenology.2012.06.011

Ranzenigo, G., Caloni, F., Cremonesi, F., Aad, P. Y., Spicer, L. J. 2008. Effects of Fusarium mycotoxins on steroid production by porcine GCs. Animal Reproduction Science, vol. 107, no. 1-2, p. 115-130. https://doi.org/10.1016/j.anireprosci.2007.06.023 PMid:17656051 DOI: https://doi.org/10.1016/j.anireprosci.2007.06.023

Rauws, A. G., Olling, M., Timmerman, A. 1982. The pharmacokinetics of prunasin, a metabolite of amygdalin. Journal of Toxicology. Clinical Toxicology, vol. 19, no. 8, p. 851-856. https://doi.org/10.3109/15563658208992518 PMid:7182513 DOI: https://doi.org/10.3109/15563658208992518

Rawan, A. F., Yoshioka, S., Abe, H., Acosta, T. J. 2015. Insulin-like growth factor-1 regulates the expression of luteinizing hormone receptor and steroid production in bovine granulosa cells. Reproduction in Domestic Animals, vol. 50, no. 2, p. 283-91. https://doi.org/10.1111/rda.12486 PMid:25626338 DOI: https://doi.org/10.1111/rda.12486

Song, Z., Xu, X. 2014. Advanced research on anti-tumor effects of amygdalin. Journal of Cancer Resesarch & Therapy, vol. 1, p. 3-7.

Spicer, L. J., Alonso, J., Chamberlain, C. S. 2001. Effects of Thyroid Hormones on Bovine Granulosa and Thecal Cell Function In Vitro: Dependence on Insulin and Gonadotropins. Journal of Dairy Science. vol. 84, no. 5, p. 1069-1076. https://doi.org/10.3168/jds.S0022-0302(01)74567-5 DOI: https://doi.org/10.3168/jds.S0022-0302(01)74567-5

Strugala, G. J., Stahl, R., Elsenhans, B., Rauws, A. G., Forth, W. 1995. Small-intestinal transfer mechanism of prunasin, the primary metabolite of the cyanogenic glycoside amygdalin. Human Experimental Toxicology, vol. 14, no. 11, p. 895-901. https://doi.org/10.1177/096032719501401107 PMid:8588951 DOI: https://doi.org/10.1177/096032719501401107

Tomanek, M., Chronowska, E. 2006. Immunohistochemical localization of proliferating cell nuclear antigen (PCNA) in the pig ovary. Folia Histochemica et Cytobiologica, vol. 44, no. 4, p. 269-274. PMid:17219721

Vejdovszky, K., Schmidt, V., Warth, B., Marko, D. 2016. Combinatory estrogenic effects between the isoflavone genistein and the mycotoxins zearalenone and alternariol in vitro. Molecular Nutrition & Food Research, vol. 61, no. 3, p. 1-12. DOI: https://doi.org/10.1002/mnfr.201600526

Yidirim, F. A., Askin, M. A. 2010. Variability of amygdalin content in seeds of sweet and bitter apricot cultivars in Turkey. African Journal of Biotechnology, vol.9, no. 39, p. 6522-6524.

Zhou, C., Qian, L., Ma, H., Yu, X., Zhang, Y., Qu, W., Zhang, X., Xia, W. 2012. Enhancement of amygdalin activated with β-D-glucosidase on HepG2 cells proliferation and apoptosis. Carbohydrate Polymers, vol. 90, no. 1, p. 516-523. https://doi.org/10.1016/j.carbpol.2012.05.073 PMid:24751072 DOI: https://doi.org/10.1016/j.carbpol.2012.05.073

Zhu, L., Yuan, H., Guo, Ch., Lu, Y., Deng, S., Yang,Y., Wei,Q., Wen, L., He, Z. 2012. Zearalenone induces apoptosis and necrosis in porcine granulosa cells via a caspase-3- and caspase-9-dependent mitochondrial signaling pathway. Journal of Cellular Physiology, vol. 227, no. 5, p. 1814-1820. https://doi.org/10.1002/jcp.22906 PMid:21732350 DOI: https://doi.org/10.1002/jcp.22906

Downloads

Published

2017-07-04

How to Cite

Halenár, M. ., Medveďová, M. ., Baldovská, S. ., Michalcová, K. ., & Kolesárová, A. . (2017). Co-administration of amygdalin and deoxynivalenol disrupted regulatory proteins linked to proliferation of porcine ovarian cells in vitro. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 503–509. https://doi.org/10.5219/791

Most read articles by the same author(s)