Improving the citric acid production by mutant strains Aspergillus niger using carbohydrate-containing raw materials as a carbon source


  • Bakhyt Shaimenova NCJSC, S. Seifullin Kazakh Agro Technical Research University, Technical Faculty, Department of Food Technology and Processing Products, Zhenis Avenue 62, Astana 010011, the Republic of Kazakhstan,
  • Gulnazym Ospankulova NCJSC S. Seifullin Kazakh Agro Technical Research University, Technical Faculty, Department of Food Technology and Processing Products, Zhenis Avenue 62, Astana 010011, the Republic of Kazakhstan, Tel.: + 77076413060
  • Saule Saduakhasova NCJSC S. Seifullin Kazakh Agro Technical Research University, Technical Faculty, Department of Food Technology and Processing Products, Zhenis Avenue 62, Astana 010011, the Republic of Kazakhstan, Tel.: + 77052449085
  • Linara Murat NCJSC S. Seifullin Kazakh Agro Technical Research University» Technical Faculty, Department of Food Technology and Processing Products, Zhenis Avenue 62, Astana 010011, the Republic of Kazakhstan, Tel.: + 77753459061
  • Dana Toimbayeva NCJSC S. Seifullin Kazakh Agro Technical Research University, Technical Faculty, Department of Food Technology and Processing Products, Zhenis Avenue 62, Astana 010011, the Republic of Kazakhstan, Tel.: +77013563619



citric acid, chemical mutagenesis, X-ray irradiation, Aspergillus niger, deep fermentation


The demand for citric acid (CA) as a component of food products, pharmaceuticals, and cosmetics is increasing yearly. The use of adapted micro-organisms that convert naturally occurring carbohydrates into organic acids makes it possible to increase annual CA production significantly. The research aim was to study CA production by the Aspergillus niger strain in the medium based on carbohydrate-containing raw materials as a carbon source. We used a fermentation by A. niger. Starch hydrolysates were chosen as a nutrient medium. To improve the CA production of A. niger, multi-step mutagenesis was performed. This resulted in mutant strain A. niger R5/4, which had the highest acidogenic activity among the samples. The study evaluated the effect of temperature on the productivity of the mutant strains. The quantitative content of citric acid was analyzed at different incubation times (144, 168, and 192 h). The effect of the initial medium pH (4.5, 5.0, and 5.5) on acid formation was also investigated. The strain's optimum temperature, pH, and cultivation time parameters were determined. A three-factor, three-level Box-Benken design (BBD) was used to optimize CA production by A. niger strain R5/4 on a starch-containing medium. When assessing the impact of temperature on CA production, the ideal range was between 29 and 31 °C.


Download data is not yet available.


Metrics Loading ...


Ibyzhanova, A., Rustenova, E., Jakupova, A., & Talapbayeva, G. (2022). Food market of the Republic of Kazakhstan: Export opportunities. In Eurasian Journal of Economic and Business Studies (Vol. 65, Issue 3, pp. 60–6). Kenzhegali Sagadiyev University of International Business.. DOI:

Lu, L. C., Chiu, S. Y., Chiu, Y. H., & Chang, T. H. (2022). Three-stage circular efficiency evaluation of agricultural food production, food consumption, and food waste recycling in EU countries. In Journal of Cleaner Production (Vol. 343, 130870). Elsevier Ltd. DOI:

Amato, A., Becci, A., & Beolchini, F. (2020). Citric acid bioproduction: The technological innovation change. In Critical Reviews in Biotechnology (Vol. 40, Issue 2, pp. 199–212). Taylor & Francis. DOI:

Kulev, D. H., Osintseva, E. V., Nikolaev, A. G., Kremleva, O. N., & Tabatchikova, T. N. (2014). Development of a certified reference materials for composition of citric acid. In Measurement Standards. Reference Materials (Issue 3, pp. 100–108). Ural Research Institute of Metrology. DOI:

de Oliveira, P. Z., de Souza Vandenberghe, L. P., Rodrigues, C., de Melo Pereira, G. V., & Soccol, C. R. (2022). Exploring cocoa pod husks as a potential substrate for citric acid production by solid-state fermentation using Aspergillus niger mutant strain. In Process Biochemistry (Vol. 113, pp. 107–112). Elsevier Ltd. DOI:

Kudasov, K. K., Berstenev, S. V., Volkov, D., & Zhambakin, K. J. (2015). Citric acid. Review. In News of Kazakhstan science (Vol. 3, Issue 125, pp. 121–153). JSC “National Center for State Scientific and Technical Evaluation”.

Dzholdasbaeva, G., & Yesakhmetova, L. (2020). Export of grain processing enterprises' products. In Problems of Agrimarket (Issue 2, pp. 126–133). Almaty: Kazahskij naučno issledovatelʹskij institut èkonomiki agropromyšlennogo kompleksa i razvitiâ selʹskih territorij.

Sugimoto, T., Murashima, K., & Ito, K. (2001). Characterization of alpha-amylase genes of industrial fungus Aspergillus kawachii. In XXI Fungal Genetics Conference (Vol. 48, p. 80). Fungal Genetics Reports.

Sharova, N. Y., & Nikiforova, T. A. (2005). Sovremennaya biotekhnologiya limonnoy kisloty i kislotostabil'nykh fermentov. In Modern high technologies (Issue 8, p. 79). Russian academy of natural history.

Behera, B. C., Mishra, R., & Mohapatra, S. (2021). Microbial citric acid: Production, properties, application, and future perspectives. In Food Frontiers (Vol. 2, Issue 1, pp. 62–76). Fujian Agriculture and Forestry University. DOI:

Kulev, D H., & Sharova, N. Y. (2013). Primenenie gidrolizatov krakhmala v proizvodstve pishchevykh kislot. In Glubokaya pererabotka zerna dlya proizvodstva krakhmala, yego modifikatsiy i sakharistykh produktov. Tendentsii razvitiya proizvodstva i potrebleniy (pp. 159–163). Russian Academy of Agricultural Sciences.

Aghera, P. R., & Bhatt, N. S. (2019). Citric аcid: Biosynthesis, properties and application. Lambert Academic Publishing.

Jiang, C., Wang, H., Liu, M., Wang, L., Yang, R., Wang, P., Lu, Z., Zhou, Y., Zheng, Z., & Zhao, G. (2022). Identification of chitin synthase activator in Aspergillus niger and its application in citric acid fermentation. In Applied Microbiology and Biotechnology (Vol. 106, Issue 21, pp. 6993–7011). Springer. DOI:

Munshi, M. K., Hossain, F., Huque, R., Rahman, M. M., Khatun, A., Islam, M., & Khalil, I. (2013). Effect of biomass and sugar in citric acid production by Aspergillus niger using molasses and jackfruit as substrates. In American Journal of Food and Nutrition (Vol. 1, Issue 1, pp. 1–6). Science and Education Publishing Co. Ltd.

Lu, Y., Zheng, X., Wang, Y., Zhang, L., Wang, L., Lei, Y., Zhang, T., Zheng, P, & Sun, J. (2022). Evaluation of Aspergillus niger six constitutive strong promoters by fluorescent-auxotrophic selection coupled with flow cytometry: A case for citric acid production. In Journal of Fungi (Vol. 8, Issue 6, p. 568). MDPI. DOI:

Sawant, O., Mahale, S., Ramchandran, V., Nagaraj, G., & Bankar, A. (2018). Fungal citric acid production using waste materials: A mini-review. In Journal of Microbiology, Biotechnology and Food Sciences (Vol. 8, Issue 2, pp. 821–828). Faculty of Biotechnology and Food Sciences Nitra. DOI:

Dezam, A. P. G., Vasconcellos, V. M., Lacava, P. T., & Farinas, C. S. (2017). Microbial production of organic acids by endophytic fungi. In Biocatalysis and Agricultural Biotechnology (Vol. 11, pp 282–287). Elsevier Ltd. DOI:

Kirimura, K., Hirowatari, Y., & Usami, S. (1987). Alterations of respiratory systems in Aspergillus niger under the conditions of citric acid fermentation. In Agricultural and biological chemistry (Vol. 51, Issue 5, pp. 1299–1303). Japan Society for Bioscience, Biotechnology, and Agrochemistry. DOI:

Wyatt, T. T., Wosten, H. A., & Dijksterhuis, J. (2013). Fungal spores for dispersion in space and time. In Advances in Applied Microbiology (Vol. 85, pp. 43–91). Elsevier Inc. DOI:

Estivi, L., Brandolini, A., Condezo-Hoyos, L., & Hidalgo, A. (2022). Impact of low-frequency ultrasound technology on physical, chemical and technological properties of cereals and pseudocereals. In Ultrasonics Sonochemistry (Vol. 86, 106044). Elsevier BV. DOI:

Bottenmuller, A., Théodon, L., Debayle, J., Vélez, D. T., Tourbin, M., Frances, C., & Gavet, Y. (2023). Granulometric analysis of maltodextrin particles observed by scanning electron microscopy. In 2023 IEEE 13th International Conference on Pattern Recognition Systems (ICPRS) (pp. 1–7). IEEE. DOI:

Bhattacharjee, I., & Baruah, P.K. (2015). Isolation and screening of citric acid producing Aspergillus spp and optimisation of citric acid production by Aspergillus niger S-6. In Journal of Environmental Science, Toxicology and Food Technology (Vol. 9, Issue 3, pp. 19–23). Elsevier and Science Press.

Cunniff, P., & Association of Official Analytical Chemists. (1995). Official methods of analysis of AOAC International (16th ed.). Association of Official Analytical Chemists.

Aboyeji, O. O., Oloke, J. K., Arinkoola, A. O., Oke, M. A., & Ishola, M. M. (2020). Optimization of media components and fermentation conditions for citric acid production from sweet potato peel starch hydrolysate by Aspergillus niger. In Scientific African (Vol. 10, e00554). Elsevier. DOI:

Angumeenal, A., Kamalakannan, P., Prabhu, H. J., & Venkappayya, D. (2003). Effect of transition metal cations on the production of citric acid using mixed cultures of Aspergillus niger and Candida gulliermondii. In Journal of the Indian Chemical Society (Vol. 80, Issue 10, pp. 903–906). Elsevier BV.

Behera, B. C. (2020). Citric acid from Aspergillus niger: A comprehensive overview. In Critical Reviews in Microbiology (Vol. 46, Issue 6, pp. 727-749). Informa UK Limited. DOI:

Zheng, X., Cairns, T. C., Ni, X., Zhang, L., Zhai, H., Meyer, V., ... & Sun, J. (2022). Comprehensively dissecting the hub regulation of PkaC on high‐productivity and pellet macromorphology in citric acid producing Aspergillus niger. In Microbial Biotechnology (Vol. 15, Issue 6, pp. 1867–1882). John Wiley & Sons, Inc. DOI:

Vinarov, A. J., Sidorenko, T. E., Smetanina, S. E., & Jashina, V. N. (1998). Moskow: Russian Agency for Patents and Trademarks. (Russian Patent No. RU 2103346С1). IP Russia.

Cao, J.-R., Fan, F.-F., Lv, C.-J., Wang, H.-P., Li, Y., Hu, S., Zhao, W.-R., Chen, H.-B., Huang, J., & Mei, L.-H. (2021). Improving the Thermostability and Activity of Transaminase From Aspergillus terreus by Charge-Charge Interaction. In Frontiers in Chemistry (Vol. 9). Frontiers Media SA. DOI:

Jiang, X., Wang, Y., Wang, Y., Huang, H., Bai, Y., Su, X., Zhang, J., Yao, B., Tu, T., & Luo, H. (2021). Exploiting the activity–stability trade-off of glucose oxidase from Aspergillus niger using a simple approach to calculate thermostability of mutants. In Food Chemistry (Vol. 342, p. 128270). Elsevier BV. DOI:

Kareem, S. O., & Rahman, R. A. (2013). Utilization of banana peels for citric acid production by Aspergillus niger. In Agriculture and Biology Journal of North America (Vol. 4, Issue 4, pp. 384–387). Science Hub. DOI:

Aguirre, S. N., Majolli, M. V. I., de Figueroa, L. I., & Callieri, D. A. (2004). Effect of Phosphorus concentration on the citric acid production by Yarrowia lipolytica s26, in a medium containing yeast extract and sugarcane molasses. In R. Jonas, A. Pandey, & G. Tharun (Eds.), Biotechnological advances and applications in bioconversion on renewable raw material (pp. 113–116). Gesellschaft für Biotechnologische Forschung mbH Bibliothek.

Davati, N., & Najafi, M. B. H. (2013). Overproduction strategies for microbial secondary metabolites: A review. In International Journal of Life Sciences & Pharma Research (Vol. 3, Issue 1, pp. 23–27). UbiJournal Pvt Ltd.

Rajpurohit, H., & Eiteman, M. A. (2022). Nutrient-limited operational strategies for the microbial production of biochemicals. In Microorganisms (Vol. 10, Issue 11, p. 2226.). MDPI. DOI:

Li, J. F., Rupa, E. J., Hurh, J., Huo, Y., Chen, L., Han, Y., Ahn, J. C., Park, J. K., Lee, H. A., Mathiyalagan, R., & Yang, D.-C. (2019). Cordyceps militaris fungus mediated Zinc Oxide nanoparticles for the photocatalytic degradation of Methylene blue dye. In Optik (Vol. 183, pp. 691–697). Elsevier GmbH. DOI:

Ali, S., & UI Haq, I. (2001). Submerged fermentation of citric acid: Counter-act effect of Cu2+ on the deleterious effect of Fe2+ in blackstrap molasses. In Journal of Biological Sciences (Vol. 1, Issue 9, pp. 852–-853). Science Alert. DOI:

Haas, H. (2014). Fungal siderophore metabolism with a focus on Aspergillus fumigatus. In Natural Product Reports (Vol. 31, Issue 10, pp. 1266–1276). Royal Society of Chemistry. DOI:

Odoni, D. I., van Gaal, M. P., Schonewille, T., Tamayo-Ramos, J. A., Martins dos Santos, V. A. P., Suarez-Diez, M., & Schaap, P. J. (2017). Aspergillus niger secretes citrate to increase iron bioavailability. In Frontiers in Microbiology (Vol. 8, 1424). Frontiers Media SA. DOI:

Kundu, P., & Ghosh, A. (2023). Genome-scale community modeling for deciphering the inter-microbial metabolic interactions in fungus-farming termite gut microbiome. In Computers in Biology and Medicine (Vol. 154, 106600). Elsevier Ltd. DOI:

Maharani, V., Reeta, D., Sundaramanickam, A., Vijayalakshmi, S., & Balasubramanian, T. (2014). Isolation and characterization of citric acid producing Aspergillus niger from spoiled coconut. In International Journal of Current Microbiology and Applied Science (Vol. 3, Issue 3, pp. 700–705). IJCMAS.

Ali, S., UI Haq, I., Qadeer, M., & Iqbal, J. (2002). Production of citric acid by Aspergillus niger using cane molasses in a stirred fermentor. In Electronic Journal of Biotechnology (Vol. 5, Issue 3, pp. 19–20). DOI:




How to Cite

Shaimenova, B., Ospankulova, G., Saduakhasova, S., Murat, L., & Toimbayeva, D. (2024). Improving the citric acid production by mutant strains Aspergillus niger using carbohydrate-containing raw materials as a carbon source. Potravinarstvo Slovak Journal of Food Sciences, 18, 157–173.