Application of the Se NPs-Chitosan molecular complex for the correction of selenium deficiency in rats model
DOI:
https://doi.org/10.5219/1871Keywords:
selenium, polysacharides, selenium deficiency, immunityAbstract
Selenium is an integral component of vital biologically active compounds of the human body. Currently, the population of many countries is characterized by selenium deficiency. In this regard, many preparations of inorganic and organic forms of selenium have been developed. Nevertheless, it is evident that the most effective solution to the problem is to enrich the diet with bioavailable forms of selenium. Thus, this work aimed to synthesize and study the antioxidant and immunomodulatory effects of the molecular complex of selenium nanoparticles (Se NPs) and chitosan in laboratory rats with induced hyposelenosis. During the experiment with animals, we found that as a result of 70-day consumption of food with a low selenium content, rats develop an alimentary selenium deficiency state, as evidenced by a significant decrease in the content of this trace element in control group rats to 48.2 ±6.71 µg/kg versus 149.3 ±21.63 µg/kg in intact animals. Course, administration of the molecular complex Se NPs- Chitosan to rats of the experimental group, contributed to the replenishment of selenium deficiency: its concentration in the blood of animals was 96.6 ±3.57 µg/kg. Thus, in animals of the control group, there was a decrease in the total number of lymphocytes by 2.7 times, T-lymphocytes – by 1.8 times, and B-lymphocytes – by 2.3 times compared with similar data in intact animals. In the context of hyposelenosis, it is worth mentioning that there was a slight increase in the content of T-helper cells and cytotoxic T-lymphocytes. The synthesized Se NPs – Chitosan complex administration during hyposelenosis demonstrated a notable immunomodulatory effect by restoring the body's immune response indicators. Thus, the total number of lymphocytes increased by 3 times, T-lymphocytes – by 1.9 times, and B-lymphocytes – by 2 times. The number of T-helper cells and cytotoxic T-lymphocytes increased by 1.9 times compared to the group of intact animals and 1.6 times compared to selenium-deficient rats. Thus, the course introduction of the molecular complex Se NPs – Chitosan against the background of selenium deficiency was accompanied by inhibition of free radical oxidation processes, activation of the antioxidant system and restoration of the immune status of the organism of laboratory animals.
Downloads
Metrics
References
Bhattacharya, P. T., Misra, S. R., & Hussain, M. (2016). Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. In Scientifica (Vol. 2016, pp. 1–12). Hindawi Limited. https://doi.org/10.1155/2016/5464373 DOI: https://doi.org/10.1155/2016/5464373
Fordyce, F. M. (2012). Selenium Deficiency and Toxicity in the Environment. In Essentials of Medical Geology (pp. 375–416). Springer Netherlands. https://doi.org/10.1007/978-94-007-4375-5_16 DOI: https://doi.org/10.1007/978-94-007-4375-5_16
Mojadadi, A., Au, A., Salah, W., Witting, P., & Ahmad, G. (2021). Role for Selenium in Metabolic Homeostasis and Human Reproduction. In Nutrients (Vol. 13, Issue 9, p. 3256). MDPI AG. https://doi.org/10.3390/nu13093256 DOI: https://doi.org/10.3390/nu13093256
Su, L.-J., Zhang, J.-H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., & Peng, Z.-Y. (2019). Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. In Oxidative Medicine and Cellular Longevity (Vol. 2019, pp. 1–13). Hindawi Limited. https://doi.org/10.1155/2019/5080843 DOI: https://doi.org/10.1155/2019/5080843
Wischhusen, P., Saito, T., Heraud, C., Kaushik, S. J., Fauconneau, B., Antony Jesu Prabhu, P., Fontagné-Dicharry, S., & Skjærven, K. H. (2020). Parental Selenium Nutrition Affects the One-Carbon Metabolism and the Hepatic DNA Methylation Pattern of Rainbow Trout (Oncorhynchus mykiss) in the Progeny. In Life (Vol. 10, Issue 8, p. 121). MDPI AG. https://doi.org/10.3390/life10080121 DOI: https://doi.org/10.3390/life10080121
Ventura, M., Melo, M., & Carrilho, F. (2017). Selenium and Thyroid Disease: From Pathophysiology to Treatment. In International Journal of Endocrinology (Vol. 2017, pp. 1–9). Hindawi Limited. https://doi.org/10.1155/2017/1297658 DOI: https://doi.org/10.1155/2017/1297658
Barchielli, G., Capperucci, A., & Tanini, D. (2022). The Role of Selenium in Pathologies: An Updated Review. In Antioxidants (Vol. 11, Issue 2, p. 251). MDPI AG. https://doi.org/10.3390/antiox11020251 DOI: https://doi.org/10.3390/antiox11020251
Gombart, A. F., Pierre, A., & Maggini, S. (2020). A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. In Nutrients (Vol. 12, Issue 1, p. 236). MDPI AG. https://doi.org/10.3390/nu12010236 DOI: https://doi.org/10.3390/nu12010236
Kaneko, N., Kurata, M., Yamamoto, T., Morikawa, S., & Masumoto, J. (2019). The role of interleukin-1 in general pathology. In Inflammation and Regeneration (Vol. 39, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s41232-019-0101-5 DOI: https://doi.org/10.1186/s41232-019-0101-5
Hawkes, W. C., Hwang, A., & Alkan, Z. (2009). The effect of selenium supplementation on DTH skin responses in healthy North American Men. In Journal of Trace Elements in Medicine and Biology (Vol. 23, Issue 4, pp. 272–280). Elsevier BV. https://doi.org/10.1016/j.jtemb.2009.04.002 DOI: https://doi.org/10.1016/j.jtemb.2009.04.002
Avery, J., & Hoffmann, P. (2018). Selenium, Selenoproteins, and Immunity. In Nutrients (Vol. 10, Issue 9, p. 1203). MDPI AG. https://doi.org/10.3390/nu10091203 DOI: https://doi.org/10.3390/nu10091203
Chen, G., Yang, F., Fan, S., Jin, H., Liao, K., Li, X., Liu, G.-B., Liang, J., Zhang, J., Xu, J.-F., & Pi, J. (2022). Immunomodulatory roles of selenium nanoparticles: Novel arts for potential immunotherapy strategy development. In Frontiers in Immunology (Vol. 13). Frontiers Media SA. https://doi.org/10.3389/fimmu.2022.956181 DOI: https://doi.org/10.3389/fimmu.2022.956181
Farhood, B., Mortezaee, K., Motevaseli, E., Mirtavoos‐Mahyari, H., Shabeeb, D., Eleojo Musa, A., Sanikhani, N. S., Najafi, M., & Ahmadi, A. (2019). Selenium as an adjuvant for modification of radiation response. In Journal of Cellular Biochemistry (Vol. 120, Issue 11, pp. 18559–18571). Wiley. https://doi.org/10.1002/jcb.29171 DOI: https://doi.org/10.1002/jcb.29171
Guillin, O., Vindry, C., Ohlmann, T., & Chavatte, L. (2019). Selenium, Selenoproteins and Viral Infection. In Nutrients (Vol. 11, Issue 9, p. 2101). MDPI AG. https://doi.org/10.3390/nu11092101 DOI: https://doi.org/10.3390/nu11092101
Razaghi, A., Poorebrahim, M., Sarhan, D., & Björnstedt, M. (2021). Selenium stimulates the antitumour immunity: Insights to future research. In European Journal of Cancer (Vol. 155, pp. 256–267). Elsevier BV. https://doi.org/10.1016/j.ejca.2021.07.013 DOI: https://doi.org/10.1016/j.ejca.2021.07.013
Nagdalian, A. A., Blinov, A. V., Siddiqui, S. A., Gvozdenko, A. A., Golik, A. B., Maglakelidze, D. G., Rzhepakovsky, I. V., Kukharuk, M. Y., Piskov, S. I., Rebezov, M. B., & Shah, M. A. (2023). Effect of selenium nanoparticles on biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.). In Scientific Reports (Vol. 13, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-023-33581-6 DOI: https://doi.org/10.1038/s41598-023-33581-6
Eliopoulos, G. D., Eliopoulos, I.-P. D., Tsioubri, M., & Economou-Eliopoulos, M. (2020). Distribution of Selenium in the Soil–Plant–Groundwater System: Factors Controlling Its Bio-Accumulation. In Minerals (Vol. 10, Issue 9, p. 795). MDPI AG. https://doi.org/10.3390/min10090795 DOI: https://doi.org/10.3390/min10090795
Pan, Z., Feng, Y., Wang, M., Meng, W., & Chen, J. (2023). Geochemical characteristics of soil selenium and evaluation of selenium-rich land resources in Guiyang area. In Frontiers in Geochemistry (Vol. 1). Frontiers Media SA. https://doi.org/10.3389/fgeoc.2023.1094023 DOI: https://doi.org/10.3389/fgeoc.2023.1094023
Zhao, L., Li, S., Zhu, Y., Wang, T., Su, Y., Shi, Z., Zhang, Y., & Zhao, Y. (2023). Association between Selenium Intake and Optimal Sleep Duration: A National Longitudinal Study. In Nutrients (Vol. 15, Issue 2, p. 397). MDPI AG. https://doi.org/10.3390/nu15020397 DOI: https://doi.org/10.3390/nu15020397
Khanam, A., & Platel, K. (2016). Bioaccessibility of selenium, selenomethionine and selenocysteine from foods and influence of heat processing on the same. In Food Chemistry (Vol. 194, pp. 1293–1299). Elsevier BV. https://doi.org/10.1016/j.foodchem.2015.09.005 DOI: https://doi.org/10.1016/j.foodchem.2015.09.005
Marshall, J. R., Burk, R. F., Ondracek, R. P., Hill, K. E., Perloff, M., Davis, W., Pili, R., George, S., & Bergan, R. (2017). Selenomethionine and methyl selenocysteine: multiple-dose pharmacokinetics in selenium-replete men. In Oncotarget (Vol. 8, Issue 16, pp. 26312–26322). Impact Journals, LLC. https://doi.org/10.18632/oncotarget.15460 DOI: https://doi.org/10.18632/oncotarget.15460
Constantinescu-Aruxandei, D., Frîncu, R., Capră, L., & Oancea, F. (2018). Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. In Nutrients (Vol. 10, Issue 10, p. 1466). MDPI AG. https://doi.org/10.3390/nu10101466 DOI: https://doi.org/10.3390/nu10101466
Kieliszek, M. (2019). Selenium–Fascinating Microelement, Properties and Sources in Food. In Molecules (Vol. 24, Issue 7, p. 1298). MDPI AG. https://doi.org/10.3390/molecules24071298 DOI: https://doi.org/10.3390/molecules24071298
Serdaru, M., Vladescu, L., & Tolea, I. (2004). Fluorimetric Study of the Selenium Course in the Dam–Calf Relationship. In Biological Trace Element Research (Vol. 99, Issues 1–3, pp. 113–122). Springer Science and Business Media LLC. https://doi.org/10.1385/bter:99:1-3:113 DOI: https://doi.org/10.1385/BTER:99:1-3:113
Kim, J., Phan, M.-T. T., Kweon, S., Yu, H., Park, J., Kim, K.-H., Hwang, I., Han, S., Kwon, M.-J., & Cho, D. (2020). A Flow Cytometry-Based Whole Blood Natural Killer Cell Cytotoxicity Assay Using Overnight Cytokine Activation. In Frontiers in Immunology (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fimmu.2020.01851 DOI: https://doi.org/10.3389/fimmu.2020.01851
Chen, E. W., Brzostek, J., Gascoigne, N. R. J., & Rybakin, V. (2018). Development of a screening strategy for new modulators of T cell receptor signaling and T cell activation. In Scientific Reports (Vol. 8, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-018-28106-5 DOI: https://doi.org/10.1038/s41598-018-28106-5
K. Martusevich, A., G. Galka, A., A. Karuzin, K., N. Tuzhilkin, A., & L. Malinovskaya, S. (2021). Cold helium plasma as a modifier of free radical processes in the blood: in vitro study. In AIMS Biophysics (Vol. 8, Issue 1, pp. 34–40). American Institute of Mathematical Sciences (AIMS). https://doi.org/10.3934/biophy.2021002 DOI: https://doi.org/10.3934/biophy.2021002
Gómez, X., Sanon, S., Zambrano, K., Asquel, S., Bassantes, M., Morales, J. E., Otáñez, G., Pomaquero, C., Villarroel, S., Zurita, A., Calvache, C., Celi, K., Contreras, T., Corrales, D., Naciph, M. B., Peña, J., & Caicedo, A. (2021). Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. In npj Microgravity (Vol. 7, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41526-021-00162-8 DOI: https://doi.org/10.1038/s41526-021-00162-8
Blinov, A. V., Kostenko K. V., Gvozdenko A. A., Maglakelidze, D., Golik, A. B., Nagdalian, A., Statsenko, E. N., Nikulnikova, N. N., Remizov, D. M., Verevkina, M. N., & Povetkin, S. N. (2021). Study of stabilization of selenium nanoparticles by polysaccharides. In Journal of Hygienic Engineering and Design (Vol. 34, Issues 1, pp. 209–216). KEY Publishing.
Lin, Z.-H., & Chris Wang, C. R. (2005). Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. In Materials Chemistry and Physics (Vol. 92, Issues 2–3, pp. 591–594). Elsevier BV. https://doi.org/10.1016/j.matchemphys.2005.02.023 DOI: https://doi.org/10.1016/j.matchemphys.2005.02.023
Vahdati, M., & Tohidi Moghadam, T. (2020). Synthesis and Characterization of Selenium Nanoparticles-Lysozyme Nanohybrid System with Synergistic Antibacterial Properties. In Scientific Reports (Vol. 10, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-019-57333-7 DOI: https://doi.org/10.1038/s41598-019-57333-7
Xu, C., Qiao, L., Ma, L., Yan, S., Guo, Y., Dou, X., Zhang, B., & Roman, A. (2019). Biosynthesis of Polysaccharides-Capped Selenium Nanoparticles Using Lactococcus lactis NZ9000 and Their Antioxidant and Anti-inflammatory Activities. In Frontiers in Microbiology (Vol. 10). Frontiers Media SA. https://doi.org/10.3389/fmicb.2019.01632 DOI: https://doi.org/10.3389/fmicb.2019.01632
Blinov, A. V., Maglakelidze, D. G., Rekhman, Z. A., Yasnaya, M. A., Gvozdenko, A. A., Golik, A. B., Blinova, A. A., Kolodkin, M. A., Alharbi, N. S., Kadaikunnan, S., Thiruvengadam, M., Shariati, M. A., & Nagdalian, A. A. (2023). Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB. In Micromachines (Vol. 14, Issue 2, p. 433). MDPI AG. https://doi.org/10.3390/mi14020433 DOI: https://doi.org/10.3390/mi14020433
Blinov, A. V., Nagdalian, A. A., Siddiqui, S. A., Maglakelidze, D. G., Gvozdenko, A. A., Blinova, A. A., Yasnaya, M. A., Golik, A. B., Rebezov, M. B., Jafari, S. M., & Shah, M. A. (2022). Synthesis and characterization of selenium nanoparticles stabilized with cocamidopropyl betaine. In Scientific Reports (Vol. 12, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-022-25884-x DOI: https://doi.org/10.1038/s41598-022-25884-x
Song, X., Chen, Y., Zhao, G., Sun, H., Che, H., & Leng, X. (2020). Effect of molecular weight of chitosan and its oligosaccharides on antitumor activities of chitosan-selenium nanoparticles. In Carbohydrate Polymers (Vol. 231, p. 115689). Elsevier BV. https://doi.org/10.1016/j.carbpol.2019.115689 DOI: https://doi.org/10.1016/j.carbpol.2019.115689
El-Megharbel, S. M., Al-Salmi, F. A., Al-Harthi, S., Alsolami, K., & Hamza, R. Z. (2021). Chitosan/Selenium Nanoparticles Attenuate Diclofenac Sodium-Induced Testicular Toxicity in Male Rats. In Crystals (Vol. 11, Issue 12, p. 1477). MDPI AG. https://doi.org/10.3390/cryst11121477 DOI: https://doi.org/10.3390/cryst11121477
Abozaid, O. A. R., El-Sonbaty, S. M., Hamam, N. M. A., Farrag, M. A., & Kodous, A. S. (2022). Chitosan-Encapsulated Nano-selenium Targeting TCF7L2, PPARγ, and CAPN10 Genes in Diabetic Rats. In Biological Trace Element Research (Vol. 201, Issue 1, pp. 306–323). Springer Science and Business Media LLC. https://doi.org/10.1007/s12011-022-03140-7 DOI: https://doi.org/10.1007/s12011-022-03140-7
Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Malevu, T. D., Sochor, J., Baron, M., Melcova, M., Zidkova, J., & Kizek, R. (2017). A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species—A Critical Review. In International Journal of Molecular Sciences (Vol. 18, Issue 10, p. 2209). MDPI AG. https://doi.org/10.3390/ijms18102209 DOI: https://doi.org/10.3390/ijms18102209
Wang, N., Tan, H.-Y., Li, S., Xu, Y., Guo, W., & Feng, Y. (2017). Supplementation of Micronutrient Selenium in Metabolic Diseases: Its Role as an Antioxidant. In Oxidative Medicine and Cellular Longevity (Vol. 2017, pp. 1–13). Hindawi Limited. https://doi.org/10.1155/2017/7478523 DOI: https://doi.org/10.1155/2017/7478523
Dehghani, F., Hossieni, S.-A., Noorafshan, A., Panjehshahin, ohammad R., & Esmaeilpour, T. (2020). Effect of Selenium on Quantitative Structural Changes in Dexamethasone-Induced Immunodeficiency Rat Models. In Iranian Journal of Medical Sciences (Vol. 46, Issue 2, pp. 128–135). Shiraz University, Medical School. https://doi.org/10.30476/ijms.2020.81137.0
Bai, K., Hong, B., Hong, Z., Sun, J., & Wang, C. (2017). Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in d-galactose-induced aging mice. In Journal of Nanobiotechnology (Vol. 15, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12951-017-0324-z DOI: https://doi.org/10.1186/s12951-017-0324-z
Cong, J. (2020). Metabolism of Natural Killer Cells and Other Innate Lymphoid Cells. In Frontiers in Immunology (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fimmu.2020.01989 DOI: https://doi.org/10.3389/fimmu.2020.01989
Mandal, A., & Viswanathan, C. (2015). Natural killer cells: In health and disease. In Hematology/Oncology and Stem Cell Therapy (Vol. 8, Issue 2, pp. 47–55). https://doi.org/10.1016/j.hemonc.2014.11.006 DOI: https://doi.org/10.1016/j.hemonc.2014.11.006
Davis, R. L., Spallholz, J. E., & Phillips, C. A. (2002). Effect of Selenium Supplementation on Cytotoxic Activity of the Human NK Cell Line. In Journal of Nutritional Immunology (Vol. 5, Issues 3–4, pp. 99–113). Informa UK Limited. https://doi.org/10.1300/j053v05n03_08 DOI: https://doi.org/10.1300/J053v05n03_08
Uresti-Rivera, E. E., Méndez-Frausto, G., Medina-Rosales, M. N., Ventura-Juárez, J., & García-Hernández, M. H. (2022). Sodium Selenite Diminished the Regulatory T Cell Differentiation In Vitro. In Biological Trace Element Research (Vol. 201, Issue 4, pp. 1559–1566). Springer Science and Business Media LLC. https://doi.org/10.1007/s12011-022-03263-x DOI: https://doi.org/10.1007/s12011-022-03263-x
Qian, F., Misra, S., & Prabhu, K. S. (2019). Selenium and selenoproteins in prostanoid metabolism and immunity. In Critical Reviews in Biochemistry and Molecular Biology (Vol. 54, Issue 6, pp. 484–516). Informa UK Limited. https://doi.org/10.1080/10409238.2020.1717430 DOI: https://doi.org/10.1080/10409238.2020.1717430
Nkengfack, G., Englert, H., & Haddadi, M. (2019). Selenium and Immunity. In Nutrition and Immunity (pp. 159–165). Springer International Publishing. https://doi.org/10.1007/978-3-030-16073-9_9 DOI: https://doi.org/10.1007/978-3-030-16073-9_9
Zhang, J., Xia, W., Liu, P., Cheng, Q., Tahi, T., Gu, W., & Li, B. (2010). Chitosan Modification and Pharmaceutical/Biomedical Applications. In Marine Drugs (Vol. 8, Issue 7, pp. 1962–1987). MDPI AG. https://doi.org/10.3390/md8071962 DOI: https://doi.org/10.3390/md8071962
Bashir, S. M., Ahmed Rather, G., Patrício, A., Haq, Z., Sheikh, A. A., Shah, M. Z. ul H., Singh, H., Khan, A. A., Imtiyaz, S., Ahmad, S. B., Nabi, S., Rakhshan, R., Hassan, S., & Fonte, P. (2022). Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications. In Materials (Vol. 15, Issue 19, p. 6521). MDPI AG. https://doi.org/10.3390/ma15196521 DOI: https://doi.org/10.3390/ma15196521
Lin, W., Qi, X., Guo, W., Liang, D., Chen, H., Lin, B., & Deng, X. (2020). A barrier against reactive oxygen species: chitosan/acellular dermal matrix scaffold enhances stem cell retention and improves cutaneous wound healing. In Stem Cell Research and Therapy (Vol. 11, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s13287-020-01901-6 DOI: https://doi.org/10.1186/s13287-020-01901-6
Tamer, T., aacute, K., Mohyeldin, M., & Soltes, L. (2016). Free radical scavenger activity of chitosan and its aminated derivative. In Journal of Applied Pharmaceutical Science (pp. 195–201). Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/japs.2016.60428 DOI: https://doi.org/10.7324/JAPS.2016.60428
Xuan Du, D., & Xuan Vuong, B. (2019). Study on Preparation of Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. In Advances in Materials Science and Engineering (Vol. 2019, pp. 1–8). Hindawi Limited. https://doi.org/10.1155/2019/8781013 DOI: https://doi.org/10.1155/2019/8781013
Baliram, R., Latif, R., Zaidi, M., & Davies, T. F. (2017). Expanding the Role of Thyroid-Stimulating Hormone in Skeletal Physiology. In Frontiers in Endocrinology (Vol. 8, No 252). Frontiers Media SA. https://doi.org/10.3389/fendo.2017.00252 DOI: https://doi.org/10.3389/fendo.2017.00252
Rasool, M., Malik, A., Saleem, S., Ashraf, M. A. B., Khan, A. Q., Waquar, S., Zahid, A., Shaheen, S., Abu-Elmagd, M., Gauthaman, K., & Pushparaj, P. N. (2021). Role of Oxidative Stress and the Identification of Biomarkers Associated With Thyroid Dysfunction in Schizophrenics. In Frontiers in Pharmacology (Vol. 12). Frontiers Media SA. https://doi.org/10.3389/fphar.2021.646287 DOI: https://doi.org/10.3389/fphar.2021.646287
Paparo, S. R., Ferrari, S. M., Patrizio, A., Elia, G., Ragusa, F., Botrini, C., Balestri, E., Guarneri, F., Benvenga, S., Antonelli, A., & Fallahi, P. (2022). Myoinositol in Autoimmune Thyroiditis. In Frontiers in Endocrinology (Vol. 13). Frontiers Media SA. https://doi.org/10.3389/fendo.2022.930756 DOI: https://doi.org/10.3389/fendo.2022.930756
Stuss, M., Michalska-Kasiczak, M., & Sewerynek, E. (2017). The role of selenium in thyroid gland pathophysiology. In Endokrynologia Polska (Vol. 68, Issue 4, pp. 440–465). VM Media SP. zo.o VM Group SK. https://doi.org/10.5603/ep.2017.0051 DOI: https://doi.org/10.5603/EP.2017.0051
Gorini, F., Sabatino, L., Pingitore, A., & Vassalle, C. (2021). Selenium: An Element of Life Essential for Thyroid Function. In Molecules (Vol. 26, Issue 23, p. 7084). MDPI AG. https://doi.org/10.3390/molecules26237084 DOI: https://doi.org/10.3390/molecules26237084
Ruggeri, R. M., D’Ascola, A., Vicchio, T. M., Campo, S., Gianì, F., Giovinazzo, S., Frasca, F., Cannavò, S., Campennì, A., & Trimarchi, F. (2019). Selenium exerts protective effects against oxidative stress and cell damage in human thyrocytes and fibroblasts. In Endocrine (Vol. 68, Issue 1, pp. 151–162). Springer Science and Business Media LLC. https://doi.org/10.1007/s12020-019-02171-w DOI: https://doi.org/10.1007/s12020-019-02171-w
Moghaddam, A., Heller, R. A., Sun, Q., Seelig, J., Cherkezov, A., Seibert, L., Hackler, J., Seemann, P., Diegmann, J., Pilz, M., Bachmann, M., Minich, W. B., & Schomburg, L. (2020). Selenium Deficiency Is Associated with Mortality Risk from COVID-19. In Nutrients (Vol. 12, Issue 7, p. 2098). MDPI AG. https://doi.org/10.3390/nu12072098 DOI: https://doi.org/10.3390/nu12072098
Stefani, S., Halim, L., Andayani, D. E., & Witjaksono, F. (2020). Selenium in Hyperthyroidism. In World Nutrition Journal (Vol. 3, Issue 2, p. 24). Indonesian Nutrition Association. https://doi.org/10.25220/wnj.v03.i2.0004 DOI: https://doi.org/10.25220/WNJ.V03.i2.0004
Li, C., Deng, X., Xie, X., Liu, Y., Friedmann Angeli, J. P., & Lai, L. (2018). Activation of Glutathione Peroxidase 4 as a Novel Anti-inflammatory Strategy. In Frontiers in Pharmacology (Vol. 9, No 1120). Frontiers Media SA. https://doi.org/10.3389/fphar.2018.01120 DOI: https://doi.org/10.3389/fphar.2018.01120
Zoidis, E., Seremelis, I., Kontopoulos, N., & Danezis, G. (2018). Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. In Antioxidants (Vol. 7, Issue 5, p. 66). MDPI AG. https://doi.org/10.3390/antiox7050066 DOI: https://doi.org/10.3390/antiox7050066
Hariharan, S., & Dharmaraj, S. (2020). Selenium and selenoproteins: it’s role in regulation of inflammation. In Inflammopharmacology (Vol. 28, Issue 3, pp. 667–695). Springer Science and Business Media LLC. https://doi.org/10.1007/s10787-020-00690-x DOI: https://doi.org/10.1007/s10787-020-00690-x
Oliveira Lima, K., Barreto Pinilla, C. M., Alemán, A., López-Caballero, M. E., Gómez-Guillén, M. C., Montero, P., & Prentice, C. (2021). Characterization, Bioactivity and Application of Chitosan-Based Nanoparticles in a Food Emulsion Model. In Polymers (Vol. 13, Issue 19, p. 3331). MDPI AG. https://doi.org/10.3390/polym13193331 DOI: https://doi.org/10.3390/polym13193331
Kumar, A., Choudhary, A., Kaur, H., Mehta, S., & Husen, A. (2021). Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. In Journal of Nanobiotechnology (Vol. 19, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12951-021-00996-0 DOI: https://doi.org/10.1186/s12951-021-00996-0
Alghuthaymi, M. A., Diab, A. M., Elzahy, A. F., Mazrou, K. E., Tayel, A. A., & Moussa, S. H. (2021). Green Biosynthesized Selenium Nanoparticles by Cinnamon Extract and Their Antimicrobial Activity and Application as Edible Coatings with Nano-Chitosan. In L. Arru (Ed.), Journal of Food Quality (Vol. 2021, pp. 1–10). Hindawi Limited. https://doi.org/10.1155/2021/6670709 DOI: https://doi.org/10.1155/2021/6670709
Mohamed, S. N., Mohamed, H. A., Elbarbary, H. A., & Abo EL-Roos, N. (2022). Antimicrobial Effects of Selenium and Chitosan Nanoparticles on Raw Milk and Kareish Cheese. In World’s Veterinary Journal (pp. 330–338). Scienceline Publication. https://doi.org/10.54203/scil.2022.wvj42 DOI: https://doi.org/10.54203/scil.2022.wvj42
Badawy, M. E. I., Lotfy, T. M. R., & Shawir, S. M. S. (2019). Preparation and antibacterial activity of chitosan-silver nanoparticles for application in preservation of minced meat. In Bulletin of the National Research Centre (Vol. 43, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s42269-019-0124-8 DOI: https://doi.org/10.1186/s42269-019-0124-8
Chen, W., Li, X., Cheng, H., & Xia, W. (2022). Chitosan-based selenium composites as potent Se supplements: Synthesis, beneficial health effects, and applications in food and agriculture. In Trends in Food Science and Technology (Vol. 129, pp. 339–352). Elsevier BV. https://doi.org/10.1016/j.tifs.2022.10.008 DOI: https://doi.org/10.1016/j.tifs.2022.10.008
Golmohammadi, R., Najar-Peerayeh, S., Tohidi Moghadam, T., & Hosseini, S. M. J. (2020). Synergistic Antibacterial Activity and Wound Healing Properties of Selenium-Chitosan-Mupirocin Nanohybrid System: An in Vivo Study on Rat Diabetic Staphylococcus aureus Wound Infection Model. In Scientific Reports (Vol. 10, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-020-59510-5 DOI: https://doi.org/10.1038/s41598-020-59510-5
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.