Application of the Se NPs-Chitosan molecular complex for the correction of selenium deficiency in rats model


  • Marina Verevkina Stavropol State Agrarian University, Zootechnicheskiy lane, 12, 355035, Stavropol, Russia, Tel.: +7-989-98-99-48
  • Vadim Goncharov Don State Technical University, 41/1, Kulakova avenue, 355035, Stavropol, Russia, Tel.: +79187592273
  • Evgeny Nesmeyanov , Don State Technical University, 1, Gagarin Square, 344003, Rostov-on-Don, Russia, Tel.: +79034068839
  • Olga Kamalova Rostov State Medical University, 29, Nakhichevan lane, 344022, Rostov-on-Don, Russia, Tel.: +79185061337
  • Igor Baklanov North Caucasus Federal University, Pushkina Street, 1, 355009, Stavropol, Russia, Tel.: +7-962-002-76-13
  • Alexander Pokhilko Armavir State Pedagogical University, Roza Luxembourg street, 159, 352901, Armavir, Krasnodar region, Russia, Tel.: +7-963-383-53-78
  • Anzhela Nagapetova Armavir State Pedagogical University, Roza Luxembourg street, 159, 352901, Armavir, Krasnodar region, Russia, Tel.: +7-989-973-75-78
  • Petr Miroshnichenko Kuban State Agrarian University, Kalinina street, 13, 350044, Krasnodar, Russia, Tel.: +79184470155



selenium, polysacharides, selenium deficiency, immunity


Selenium is an integral component of vital biologically active compounds of the human body. Currently, the population of many countries is characterized by selenium deficiency. In this regard, many preparations of inorganic and organic forms of selenium have been developed. Nevertheless, it is evident that the most effective solution to the problem is to enrich the diet with bioavailable forms of selenium. Thus, this work aimed to synthesize and study the antioxidant and immunomodulatory effects of the molecular complex of selenium nanoparticles (Se NPs) and chitosan in laboratory rats with induced hyposelenosis. During the experiment with animals, we found that as a result of 70-day consumption of food with a low selenium content, rats develop an alimentary selenium deficiency state, as evidenced by a significant decrease in the content of this trace element in control group rats to 48.2 ±6.71 µg/kg versus 149.3 ±21.63 µg/kg in intact animals. Course, administration of the molecular complex Se NPs- Chitosan to rats of the experimental group, contributed to the replenishment of selenium deficiency: its concentration in the blood of animals was 96.6 ±3.57 µg/kg. Thus, in animals of the control group, there was a decrease in the total number of lymphocytes by 2.7 times, T-lymphocytes – by 1.8 times, and B-lymphocytes – by 2.3 times compared with similar data in intact animals. In the context of hyposelenosis, it is worth mentioning that there was a slight increase in the content of T-helper cells and cytotoxic T-lymphocytes. The synthesized Se NPs – Chitosan complex administration during hyposelenosis demonstrated a notable immunomodulatory effect by restoring the body's immune response indicators. Thus, the total number of lymphocytes increased by 3 times, T-lymphocytes – by 1.9 times, and B-lymphocytes – by 2 times. The number of T-helper cells and cytotoxic T-lymphocytes increased by 1.9 times compared to the group of intact animals and 1.6 times compared to selenium-deficient rats. Thus, the course introduction of the molecular complex Se NPs – Chitosan against the background of selenium deficiency was accompanied by inhibition of free radical oxidation processes, activation of the antioxidant system and restoration of the immune status of the organism of laboratory animals.


Download data is not yet available.


Metrics Loading ...


Bhattacharya, P. T., Misra, S. R., & Hussain, M. (2016). Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. In Scientifica (Vol. 2016, pp. 1–12). Hindawi Limited. DOI:

Fordyce, F. M. (2012). Selenium Deficiency and Toxicity in the Environment. In Essentials of Medical Geology (pp. 375–416). Springer Netherlands. DOI:

Mojadadi, A., Au, A., Salah, W., Witting, P., & Ahmad, G. (2021). Role for Selenium in Metabolic Homeostasis and Human Reproduction. In Nutrients (Vol. 13, Issue 9, p. 3256). MDPI AG. DOI:

Su, L.-J., Zhang, J.-H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., & Peng, Z.-Y. (2019). Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. In Oxidative Medicine and Cellular Longevity (Vol. 2019, pp. 1–13). Hindawi Limited. DOI:

Wischhusen, P., Saito, T., Heraud, C., Kaushik, S. J., Fauconneau, B., Antony Jesu Prabhu, P., Fontagné-Dicharry, S., & Skjærven, K. H. (2020). Parental Selenium Nutrition Affects the One-Carbon Metabolism and the Hepatic DNA Methylation Pattern of Rainbow Trout (Oncorhynchus mykiss) in the Progeny. In Life (Vol. 10, Issue 8, p. 121). MDPI AG. DOI:

Ventura, M., Melo, M., & Carrilho, F. (2017). Selenium and Thyroid Disease: From Pathophysiology to Treatment. In International Journal of Endocrinology (Vol. 2017, pp. 1–9). Hindawi Limited. DOI:

Barchielli, G., Capperucci, A., & Tanini, D. (2022). The Role of Selenium in Pathologies: An Updated Review. In Antioxidants (Vol. 11, Issue 2, p. 251). MDPI AG. DOI:

Gombart, A. F., Pierre, A., & Maggini, S. (2020). A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. In Nutrients (Vol. 12, Issue 1, p. 236). MDPI AG. DOI:

Kaneko, N., Kurata, M., Yamamoto, T., Morikawa, S., & Masumoto, J. (2019). The role of interleukin-1 in general pathology. In Inflammation and Regeneration (Vol. 39, Issue 1). Springer Science and Business Media LLC. DOI:

Hawkes, W. C., Hwang, A., & Alkan, Z. (2009). The effect of selenium supplementation on DTH skin responses in healthy North American Men. In Journal of Trace Elements in Medicine and Biology (Vol. 23, Issue 4, pp. 272–280). Elsevier BV. DOI:

Avery, J., & Hoffmann, P. (2018). Selenium, Selenoproteins, and Immunity. In Nutrients (Vol. 10, Issue 9, p. 1203). MDPI AG. DOI:

Chen, G., Yang, F., Fan, S., Jin, H., Liao, K., Li, X., Liu, G.-B., Liang, J., Zhang, J., Xu, J.-F., & Pi, J. (2022). Immunomodulatory roles of selenium nanoparticles: Novel arts for potential immunotherapy strategy development. In Frontiers in Immunology (Vol. 13). Frontiers Media SA. DOI:

Farhood, B., Mortezaee, K., Motevaseli, E., Mirtavoos‐Mahyari, H., Shabeeb, D., Eleojo Musa, A., Sanikhani, N. S., Najafi, M., & Ahmadi, A. (2019). Selenium as an adjuvant for modification of radiation response. In Journal of Cellular Biochemistry (Vol. 120, Issue 11, pp. 18559–18571). Wiley. DOI:

Guillin, O., Vindry, C., Ohlmann, T., & Chavatte, L. (2019). Selenium, Selenoproteins and Viral Infection. In Nutrients (Vol. 11, Issue 9, p. 2101). MDPI AG. DOI:

Razaghi, A., Poorebrahim, M., Sarhan, D., & Björnstedt, M. (2021). Selenium stimulates the antitumour immunity: Insights to future research. In European Journal of Cancer (Vol. 155, pp. 256–267). Elsevier BV. DOI:

Nagdalian, A. A., Blinov, A. V., Siddiqui, S. A., Gvozdenko, A. A., Golik, A. B., Maglakelidze, D. G., Rzhepakovsky, I. V., Kukharuk, M. Y., Piskov, S. I., Rebezov, M. B., & Shah, M. A. (2023). Effect of selenium nanoparticles on biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.). In Scientific Reports (Vol. 13, Issue 1). Springer Science and Business Media LLC. DOI:

Eliopoulos, G. D., Eliopoulos, I.-P. D., Tsioubri, M., & Economou-Eliopoulos, M. (2020). Distribution of Selenium in the Soil–Plant–Groundwater System: Factors Controlling Its Bio-Accumulation. In Minerals (Vol. 10, Issue 9, p. 795). MDPI AG. DOI:

Pan, Z., Feng, Y., Wang, M., Meng, W., & Chen, J. (2023). Geochemical characteristics of soil selenium and evaluation of selenium-rich land resources in Guiyang area. In Frontiers in Geochemistry (Vol. 1). Frontiers Media SA. DOI:

Zhao, L., Li, S., Zhu, Y., Wang, T., Su, Y., Shi, Z., Zhang, Y., & Zhao, Y. (2023). Association between Selenium Intake and Optimal Sleep Duration: A National Longitudinal Study. In Nutrients (Vol. 15, Issue 2, p. 397). MDPI AG. DOI:

Khanam, A., & Platel, K. (2016). Bioaccessibility of selenium, selenomethionine and selenocysteine from foods and influence of heat processing on the same. In Food Chemistry (Vol. 194, pp. 1293–1299). Elsevier BV. DOI:

Marshall, J. R., Burk, R. F., Ondracek, R. P., Hill, K. E., Perloff, M., Davis, W., Pili, R., George, S., & Bergan, R. (2017). Selenomethionine and methyl selenocysteine: multiple-dose pharmacokinetics in selenium-replete men. In Oncotarget (Vol. 8, Issue 16, pp. 26312–26322). Impact Journals, LLC. DOI:

Constantinescu-Aruxandei, D., Frîncu, R., Capră, L., & Oancea, F. (2018). Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. In Nutrients (Vol. 10, Issue 10, p. 1466). MDPI AG. DOI:

Kieliszek, M. (2019). Selenium–Fascinating Microelement, Properties and Sources in Food. In Molecules (Vol. 24, Issue 7, p. 1298). MDPI AG. DOI:

Serdaru, M., Vladescu, L., & Tolea, I. (2004). Fluorimetric Study of the Selenium Course in the Dam–Calf Relationship. In Biological Trace Element Research (Vol. 99, Issues 1–3, pp. 113–122). Springer Science and Business Media LLC. DOI:

Kim, J., Phan, M.-T. T., Kweon, S., Yu, H., Park, J., Kim, K.-H., Hwang, I., Han, S., Kwon, M.-J., & Cho, D. (2020). A Flow Cytometry-Based Whole Blood Natural Killer Cell Cytotoxicity Assay Using Overnight Cytokine Activation. In Frontiers in Immunology (Vol. 11). Frontiers Media SA. DOI:

Chen, E. W., Brzostek, J., Gascoigne, N. R. J., & Rybakin, V. (2018). Development of a screening strategy for new modulators of T cell receptor signaling and T cell activation. In Scientific Reports (Vol. 8, Issue 1). Springer Science and Business Media LLC. DOI:

K. Martusevich, A., G. Galka, A., A. Karuzin, K., N. Tuzhilkin, A., & L. Malinovskaya, S. (2021). Cold helium plasma as a modifier of free radical processes in the blood: in vitro study. In AIMS Biophysics (Vol. 8, Issue 1, pp. 34–40). American Institute of Mathematical Sciences (AIMS). DOI:

Gómez, X., Sanon, S., Zambrano, K., Asquel, S., Bassantes, M., Morales, J. E., Otáñez, G., Pomaquero, C., Villarroel, S., Zurita, A., Calvache, C., Celi, K., Contreras, T., Corrales, D., Naciph, M. B., Peña, J., & Caicedo, A. (2021). Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. In npj Microgravity (Vol. 7, Issue 1). Springer Science and Business Media LLC. DOI:

Blinov, A. V., Kostenko K. V., Gvozdenko A. A., Maglakelidze, D., Golik, A. B., Nagdalian, A., Statsenko, E. N., Nikulnikova, N. N., Remizov, D. M., Verevkina, M. N., & Povetkin, S. N. (2021). Study of stabilization of selenium nanoparticles by polysaccharides. In Journal of Hygienic Engineering and Design (Vol. 34, Issues 1, pp. 209–216). KEY Publishing.

Lin, Z.-H., & Chris Wang, C. R. (2005). Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. In Materials Chemistry and Physics (Vol. 92, Issues 2–3, pp. 591–594). Elsevier BV. DOI:

Vahdati, M., & Tohidi Moghadam, T. (2020). Synthesis and Characterization of Selenium Nanoparticles-Lysozyme Nanohybrid System with Synergistic Antibacterial Properties. In Scientific Reports (Vol. 10, Issue 1). Springer Science and Business Media LLC. DOI:

Xu, C., Qiao, L., Ma, L., Yan, S., Guo, Y., Dou, X., Zhang, B., & Roman, A. (2019). Biosynthesis of Polysaccharides-Capped Selenium Nanoparticles Using Lactococcus lactis NZ9000 and Their Antioxidant and Anti-inflammatory Activities. In Frontiers in Microbiology (Vol. 10). Frontiers Media SA. DOI:

Blinov, A. V., Maglakelidze, D. G., Rekhman, Z. A., Yasnaya, M. A., Gvozdenko, A. A., Golik, A. B., Blinova, A. A., Kolodkin, M. A., Alharbi, N. S., Kadaikunnan, S., Thiruvengadam, M., Shariati, M. A., & Nagdalian, A. A. (2023). Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB. In Micromachines (Vol. 14, Issue 2, p. 433). MDPI AG. DOI:

Blinov, A. V., Nagdalian, A. A., Siddiqui, S. A., Maglakelidze, D. G., Gvozdenko, A. A., Blinova, A. A., Yasnaya, M. A., Golik, A. B., Rebezov, M. B., Jafari, S. M., & Shah, M. A. (2022). Synthesis and characterization of selenium nanoparticles stabilized with cocamidopropyl betaine. In Scientific Reports (Vol. 12, Issue 1). Springer Science and Business Media LLC. DOI:

Song, X., Chen, Y., Zhao, G., Sun, H., Che, H., & Leng, X. (2020). Effect of molecular weight of chitosan and its oligosaccharides on antitumor activities of chitosan-selenium nanoparticles. In Carbohydrate Polymers (Vol. 231, p. 115689). Elsevier BV. DOI:

El-Megharbel, S. M., Al-Salmi, F. A., Al-Harthi, S., Alsolami, K., & Hamza, R. Z. (2021). Chitosan/Selenium Nanoparticles Attenuate Diclofenac Sodium-Induced Testicular Toxicity in Male Rats. In Crystals (Vol. 11, Issue 12, p. 1477). MDPI AG. DOI:

Abozaid, O. A. R., El-Sonbaty, S. M., Hamam, N. M. A., Farrag, M. A., & Kodous, A. S. (2022). Chitosan-Encapsulated Nano-selenium Targeting TCF7L2, PPARγ, and CAPN10 Genes in Diabetic Rats. In Biological Trace Element Research (Vol. 201, Issue 1, pp. 306–323). Springer Science and Business Media LLC. DOI:

Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Malevu, T. D., Sochor, J., Baron, M., Melcova, M., Zidkova, J., & Kizek, R. (2017). A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species—A Critical Review. In International Journal of Molecular Sciences (Vol. 18, Issue 10, p. 2209). MDPI AG. DOI:

Wang, N., Tan, H.-Y., Li, S., Xu, Y., Guo, W., & Feng, Y. (2017). Supplementation of Micronutrient Selenium in Metabolic Diseases: Its Role as an Antioxidant. In Oxidative Medicine and Cellular Longevity (Vol. 2017, pp. 1–13). Hindawi Limited. DOI:

Dehghani, F., Hossieni, S.-A., Noorafshan, A., Panjehshahin, ohammad R., & Esmaeilpour, T. (2020). Effect of Selenium on Quantitative Structural Changes in Dexamethasone-Induced Immunodeficiency Rat Models. In Iranian Journal of Medical Sciences (Vol. 46, Issue 2, pp. 128–135). Shiraz University, Medical School.

Bai, K., Hong, B., Hong, Z., Sun, J., & Wang, C. (2017). Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in d-galactose-induced aging mice. In Journal of Nanobiotechnology (Vol. 15, Issue 1). Springer Science and Business Media LLC. DOI:

Cong, J. (2020). Metabolism of Natural Killer Cells and Other Innate Lymphoid Cells. In Frontiers in Immunology (Vol. 11). Frontiers Media SA. DOI:

Mandal, A., & Viswanathan, C. (2015). Natural killer cells: In health and disease. In Hematology/Oncology and Stem Cell Therapy (Vol. 8, Issue 2, pp. 47–55). DOI:

Davis, R. L., Spallholz, J. E., & Phillips, C. A. (2002). Effect of Selenium Supplementation on Cytotoxic Activity of the Human NK Cell Line. In Journal of Nutritional Immunology (Vol. 5, Issues 3–4, pp. 99–113). Informa UK Limited. DOI:

Uresti-Rivera, E. E., Méndez-Frausto, G., Medina-Rosales, M. N., Ventura-Juárez, J., & García-Hernández, M. H. (2022). Sodium Selenite Diminished the Regulatory T Cell Differentiation In Vitro. In Biological Trace Element Research (Vol. 201, Issue 4, pp. 1559–1566). Springer Science and Business Media LLC. DOI:

Qian, F., Misra, S., & Prabhu, K. S. (2019). Selenium and selenoproteins in prostanoid metabolism and immunity. In Critical Reviews in Biochemistry and Molecular Biology (Vol. 54, Issue 6, pp. 484–516). Informa UK Limited. DOI:

Nkengfack, G., Englert, H., & Haddadi, M. (2019). Selenium and Immunity. In Nutrition and Immunity (pp. 159–165). Springer International Publishing. DOI:

Zhang, J., Xia, W., Liu, P., Cheng, Q., Tahi, T., Gu, W., & Li, B. (2010). Chitosan Modification and Pharmaceutical/Biomedical Applications. In Marine Drugs (Vol. 8, Issue 7, pp. 1962–1987). MDPI AG. DOI:

Bashir, S. M., Ahmed Rather, G., Patrício, A., Haq, Z., Sheikh, A. A., Shah, M. Z. ul H., Singh, H., Khan, A. A., Imtiyaz, S., Ahmad, S. B., Nabi, S., Rakhshan, R., Hassan, S., & Fonte, P. (2022). Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications. In Materials (Vol. 15, Issue 19, p. 6521). MDPI AG. DOI:

Lin, W., Qi, X., Guo, W., Liang, D., Chen, H., Lin, B., & Deng, X. (2020). A barrier against reactive oxygen species: chitosan/acellular dermal matrix scaffold enhances stem cell retention and improves cutaneous wound healing. In Stem Cell Research and Therapy (Vol. 11, Issue 1). Springer Science and Business Media LLC. DOI:

Tamer, T., aacute, K., Mohyeldin, M., & Soltes, L. (2016). Free radical scavenger activity of chitosan and its aminated derivative. In Journal of Applied Pharmaceutical Science (pp. 195–201). Journal of Applied Pharmaceutical Science. DOI:

Xuan Du, D., & Xuan Vuong, B. (2019). Study on Preparation of Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. In Advances in Materials Science and Engineering (Vol. 2019, pp. 1–8). Hindawi Limited. DOI:

Baliram, R., Latif, R., Zaidi, M., & Davies, T. F. (2017). Expanding the Role of Thyroid-Stimulating Hormone in Skeletal Physiology. In Frontiers in Endocrinology (Vol. 8, No 252). Frontiers Media SA. DOI:

Rasool, M., Malik, A., Saleem, S., Ashraf, M. A. B., Khan, A. Q., Waquar, S., Zahid, A., Shaheen, S., Abu-Elmagd, M., Gauthaman, K., & Pushparaj, P. N. (2021). Role of Oxidative Stress and the Identification of Biomarkers Associated With Thyroid Dysfunction in Schizophrenics. In Frontiers in Pharmacology (Vol. 12). Frontiers Media SA. DOI:

Paparo, S. R., Ferrari, S. M., Patrizio, A., Elia, G., Ragusa, F., Botrini, C., Balestri, E., Guarneri, F., Benvenga, S., Antonelli, A., & Fallahi, P. (2022). Myoinositol in Autoimmune Thyroiditis. In Frontiers in Endocrinology (Vol. 13). Frontiers Media SA. DOI:

Stuss, M., Michalska-Kasiczak, M., & Sewerynek, E. (2017). The role of selenium in thyroid gland pathophysiology. In Endokrynologia Polska (Vol. 68, Issue 4, pp. 440–465). VM Media SP. zo.o VM Group SK. DOI:

Gorini, F., Sabatino, L., Pingitore, A., & Vassalle, C. (2021). Selenium: An Element of Life Essential for Thyroid Function. In Molecules (Vol. 26, Issue 23, p. 7084). MDPI AG. DOI:

Ruggeri, R. M., D’Ascola, A., Vicchio, T. M., Campo, S., Gianì, F., Giovinazzo, S., Frasca, F., Cannavò, S., Campennì, A., & Trimarchi, F. (2019). Selenium exerts protective effects against oxidative stress and cell damage in human thyrocytes and fibroblasts. In Endocrine (Vol. 68, Issue 1, pp. 151–162). Springer Science and Business Media LLC. DOI:

Moghaddam, A., Heller, R. A., Sun, Q., Seelig, J., Cherkezov, A., Seibert, L., Hackler, J., Seemann, P., Diegmann, J., Pilz, M., Bachmann, M., Minich, W. B., & Schomburg, L. (2020). Selenium Deficiency Is Associated with Mortality Risk from COVID-19. In Nutrients (Vol. 12, Issue 7, p. 2098). MDPI AG. DOI:

Stefani, S., Halim, L., Andayani, D. E., & Witjaksono, F. (2020). Selenium in Hyperthyroidism. In World Nutrition Journal (Vol. 3, Issue 2, p. 24). Indonesian Nutrition Association. DOI:

Li, C., Deng, X., Xie, X., Liu, Y., Friedmann Angeli, J. P., & Lai, L. (2018). Activation of Glutathione Peroxidase 4 as a Novel Anti-inflammatory Strategy. In Frontiers in Pharmacology (Vol. 9, No 1120). Frontiers Media SA. DOI:

Zoidis, E., Seremelis, I., Kontopoulos, N., & Danezis, G. (2018). Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. In Antioxidants (Vol. 7, Issue 5, p. 66). MDPI AG. DOI:

Hariharan, S., & Dharmaraj, S. (2020). Selenium and selenoproteins: it’s role in regulation of inflammation. In Inflammopharmacology (Vol. 28, Issue 3, pp. 667–695). Springer Science and Business Media LLC. DOI:

Oliveira Lima, K., Barreto Pinilla, C. M., Alemán, A., López-Caballero, M. E., Gómez-Guillén, M. C., Montero, P., & Prentice, C. (2021). Characterization, Bioactivity and Application of Chitosan-Based Nanoparticles in a Food Emulsion Model. In Polymers (Vol. 13, Issue 19, p. 3331). MDPI AG. DOI:

Kumar, A., Choudhary, A., Kaur, H., Mehta, S., & Husen, A. (2021). Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. In Journal of Nanobiotechnology (Vol. 19, Issue 1). Springer Science and Business Media LLC. DOI:

Alghuthaymi, M. A., Diab, A. M., Elzahy, A. F., Mazrou, K. E., Tayel, A. A., & Moussa, S. H. (2021). Green Biosynthesized Selenium Nanoparticles by Cinnamon Extract and Their Antimicrobial Activity and Application as Edible Coatings with Nano-Chitosan. In L. Arru (Ed.), Journal of Food Quality (Vol. 2021, pp. 1–10). Hindawi Limited. DOI:

Mohamed, S. N., Mohamed, H. A., Elbarbary, H. A., & Abo EL-Roos, N. (2022). Antimicrobial Effects of Selenium and Chitosan Nanoparticles on Raw Milk and Kareish Cheese. In World’s Veterinary Journal (pp. 330–338). Scienceline Publication. DOI:

Badawy, M. E. I., Lotfy, T. M. R., & Shawir, S. M. S. (2019). Preparation and antibacterial activity of chitosan-silver nanoparticles for application in preservation of minced meat. In Bulletin of the National Research Centre (Vol. 43, Issue 1). Springer Science and Business Media LLC. DOI:

Chen, W., Li, X., Cheng, H., & Xia, W. (2022). Chitosan-based selenium composites as potent Se supplements: Synthesis, beneficial health effects, and applications in food and agriculture. In Trends in Food Science and Technology (Vol. 129, pp. 339–352). Elsevier BV. DOI:

Golmohammadi, R., Najar-Peerayeh, S., Tohidi Moghadam, T., & Hosseini, S. M. J. (2020). Synergistic Antibacterial Activity and Wound Healing Properties of Selenium-Chitosan-Mupirocin Nanohybrid System: An in Vivo Study on Rat Diabetic Staphylococcus aureus Wound Infection Model. In Scientific Reports (Vol. 10, Issue 1). Springer Science and Business Media LLC. DOI:




How to Cite

Verevkina, M., Goncharov, V., Nesmeyanov, E., Kamalova, O., Baklanov, I., Pokhilko, A., Nagapetova, A., & Miroshnichenko, P. (2023). Application of the Se NPs-Chitosan molecular complex for the correction of selenium deficiency in rats model. Potravinarstvo Slovak Journal of Food Sciences, 17, 455–466.