The effect of Kawa Daun (Coffea canephora) decoction on blood glucose levels and pancreatic β-cells regeneration in rats with diabetes
DOI:
https://doi.org/10.5219/1830Keywords:
blood glucose, Kawa Daun, pancreatic β-cells, flavonoid, antioxidantAbstract
Giving coffee leaves Kawa Daun (Coffea canephora), which contains flavonoids and chlorophyll, which are antioxidants, is one of the therapies that may be used to treat diabetes mellitus, which is expected to affect 783 million people worldwide by 2045. This study, therefore, aims to demonstrate Kawa Daun decoction’s potency in lowering blood glucose levels and restoring pancreatic β-cells in rats with diabetes mellitus. Wistar rats (2-3 months, 200 g, n = 28) were used in this true experimental study, which applied a pre-post-control group design. Regular feeding + no intervention was for the group (K-); Kawa Daun was not provided to (K+) DM (alloxan) rats + regular feeding; (P1) DM rats (alloxan) received 3.6 ml/200 g BW/day of Kawa Daun decoction along with regular feeding; Kawa Daun decoction 7.2 ml/200 g body weight/day in addition to regular feeding was given to (P2) DM rats (alloxan). For 14 days, the intervention was given orally. A spectrophotometer was utilized to detect blood glucose levels, and histological analysis using H&E staining was employed to determine the state of the pancreatic β-cells. In comparison to the (K+) group, the intervention group significantly decreased blood glucose levels (p = 0.001), according to the findings. The P2 group's reduction in blood sugar levels (∆ = 139.33 mg/dl 38.45) was more significant than that of the P1 group (∆ = 109.17 mg/dl 35.32). Compared to the (K+) (27.1% damage) group, the intervention group's pancreatic β-cells revealed improvement according to the histopathological examination results. The group's (P2 = 14.9%) damage area was less than the group's (P1 = 22.4%). This study emphasizes how administering Kawa Daun decoction can improve blood glucose levels and reconstruct the pancreatic β-cells damage and its protection. Finally, this kind of leaf could be a substitute compound for diabetic herbal therapy.
Downloads
Metrics
References
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. In International Journal of Molecular Sciences (Vol. 21, Issue 17, p. 6275). MDPI AG. https://doi.org/10.3390/ijms21176275 DOI: https://doi.org/10.3390/ijms21176275
International Diabetic Federation. (2021). IDF Diabetes Atlas. 10th eds. Edited by D. J. M. Edward J Boyko, P. R. Suvi Karuranga, Lorenzo Piemonte, and H. S. Pouya Saeedi. International Diabetic Federation. Retrieved from https://diabetesatlas.org.
Kementerian Kesehatan Republik Indonesia. (2019). Laporan Hasil Riset Kesehatan Dasar (RISKESDAS) [Basic Health Research Result Report]. Indonesia.
Gemala, A., Nurmasari, W., Zulfatul M., Rizka, A. D. Y., Vita Gustin, A., Fahmy, A. A. T., Choirun, N., & M Iqbaô, P-A. (2017). Bioactive components and antibacterial activity in robusta coffee leaves (Coffea canephora). In International Journal of Pharmaceutical Research (Vol. 12, Issue 3, pp. 1374–1382). Advanced Scientific Research.
Galam, N. Z., Gambo, I. M., Rabiu, A., Chinelo, N., & Dami, S. (2013). Anti-Inflammatory Effect of Aqueous Extract of Coffee plant Leaves (Coffea canephora) in Rats. In Journal of Natural Science Research (Vol. 3, Issue 7, pp. 191–194). IISTE.
Widyastuti, N., Anjani, G., & Prawira-Atmaja, M. (2020). The effect of brewed robusta coffee leaves on insulin levels and HOMA-IR index in metabolic syndrome rats. In Romanian Journal of Diabetes, Nutrition and Metabolic Diseases (Vol. 27, Issue, 1, pp. 16–24). Romanian Society of Diabetes Nutrition and Metabolic Diseases.
Shiyan, S., Herlina, H., Arsela, D., & Latifa, E. (2017). Aktivitas antidiabetes ekstrak etanolik daun kopi robusta (Coffea canephora) pada tikus diabetes tipe 2 yang diberi diet lemak tinggi dan sukrosa. In Jurnal Farmasi Sains dan Praktis (Vol. 3, Issue 2, pp. 39–46). Universitas Muhammadiyah Magelang. https://doi.org/10.31603/pharmacy.v3i2.1730 DOI: https://doi.org/10.31603/pharmacy.v3i2.1730
Association of Official Analytical Chemists. (2005). Official Methods of Analysis of AOAC International (18th ed.) (Arlington: AOAC).
Yang, L., Gao, D., Zhang, Y., & She, W. (2018). Study on water and chloride transport in cracked mortar using X-ray CT, gravimetric method and natural immersion method. In Construction and Building Materials (Vol. 176, pp. 652–664). Elsevier BV. https://doi.org/10.1016/j.conbuildmat.2018.05.094 DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.094
Aminot, A., & Rey, F. (2000). Standard procedure for the determination of chlorophyll a by spectroscopic methods. In International Council for the Exploration of the Sea (Vol. 112, Issue 25). ICES.
Prawira-Atmaja, M. I., Shabri, Khomaini, H. S., Maulana, H., Harianto, S., & Rohdiana, D. (2018). Changes in chlorophyll and polyphenols content in Camellia sinensis var. sinensisat different stage of leaf maturity. In IOP Conference Series: Earth and Environmental Science (Vol. 131, p. 012010). IOP Publishing. https://doi.org/10.1088/1755-1315/131/1/012010 DOI: https://doi.org/10.1088/1755-1315/131/1/012010
Soares, L., Silva, L., & Pezzini, B. (2015). Spectrophotometric Determination Of The Total Flavonoid Content In Ocimum Basilicum L. (Lamiaceae) Leaves. In Pharmacognosy Magazine (Vol. 11, Issue 41, pp. 96). Medknow. https://doi.org/10.4103/0973-1296.149721 DOI: https://doi.org/10.4103/0973-1296.149721
Shahidi, F. (2015). Antioxidants. In Handbook of Antioxidants for Food Preservation (pp. 1–14). Elsevier. https://doi.org/10.1016/b978-1-78242-089-7.00001-4 DOI: https://doi.org/10.1016/B978-1-78242-089-7.00001-4
Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. In Songklanakarin J. Sci. Technol. (Vol. 26, Issue 2, pp. 211–219). Prince of Songkla University.
Phisut, N., & Jiraporn, B. (2013). Characteristics and antioxidant activity of Maillard reaction products derived from chitosan-sugar solution. In International Food Research Journal (Vol. 20, Issue 3, pp. 1077–1085). Universiti Putra Malaysia.
Kaur, M., Tyagi, S., & Kundu, N. (2018). Effect of Brewing Methods and Time on Secondary Metabolites, Total Flavonoid and Phenolic Content of Green and Roasted coffee Coffea arabica, Coffea canephora and Monsooned Malabar. In European Journal of Medicinal Plants (Vol. 23, Issue 1, pp. 1–16). Sciencedomain International. https://doi.org/10.9734/ejmp/2018/40565 DOI: https://doi.org/10.9734/EJMP/2018/40565
Ristiana, D. (2017). Aktivitas Antioksidan Dan Kadar Fenol Berbagai Ekstrak Daun Kopi (Coffea Sp.): Potensi Aplikasi Bahan Alami Untuk Fortifikasi Pangan [Antioxidant Activity And Phenol Content Of Various Coffee Leaf Extracts (Coffea Sp.): Potential Application Of Natural Materials For Food Fortification]. In Jurnal Aplikasi Teknologi Pangan (Vol. 6, Issue 2). Indonesian Food Technologists. https://doi.org/10.17728/jatp.205 DOI: https://doi.org/10.17728/jatp.205
AL-Ishaq, Abotaleb, Kubatka, Kajo, & Büsselberg. (2019). Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. In Biomolecules (Vol. 9, Issue 9, p. 430). MDPI AG. https://doi.org/10.3390/biom9090430 DOI: https://doi.org/10.3390/biom9090430
Thu, D. K., Hung, V. M., Trang, N. T., & Thanh Tung, B. (2019). Study on α-glucosidase enzyme inhibitory activity and DPPH free radical scavenging of green coffee bean extract (Coffea canephora). In VNU Journal of Science: Medical and Pharmaceutical Sciences (Vol. 35, Issue 2). Vietnam National University Journal of Science. https://doi.org/10.25073/2588-1132/vnumps.4180 DOI: https://doi.org/10.25073/2588-1132/vnumps.4180
Handayani, D. R., Pratama, A. G. N., & Putra, I. W. A. (2021). Effect of Ethanol Extract of Robusta Coffee (Coffea canephora) on the Function of the Liver and Kidney of Wistar Rat. In Advances in Health Sciences Research. 12th Annual Scientific Meeting, Medical Faculty, Universitas Jenderal Achmad Yani, International Symposium on “Emergency Preparedness and Disaster Response during COVID 19 Pandemic” (ASMC 2021)). Atlantis Press. https://doi.org/10.2991/ahsr.k.210723.017 DOI: https://doi.org/10.2991/ahsr.k.210723.017
Eizirik, D. L., Pasquali, L., & Cnop, M. (2020). Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. In Nature Reviews Endocrinology (Vol. 16, Issue 7, pp. 349–362). Springer Science and Business Media LLC. https://doi.org/10.1038/s41574-020-0355-7 DOI: https://doi.org/10.1038/s41574-020-0355-7
Primal, D., & Ahriyasna, R. (2022). Efek Ingesti Seduhan Daun Sungkai (Peronema canescens) terhadap Perubahan Glukosa Darah dan Kerusakan Ginjal Tikus Diabetes Mellitus. In JURNAL KESEHATAN PERINTIS (Perintis’s Health Journal) (Vol. 9, Issue 2, pp. 110–124). STIKes Perintis Padang. https://doi.org/10.33653/jkp.v9i2.879 DOI: https://doi.org/10.33653/jkp.v9i2.879
Braunwald, E. (2019). Diabetes, heart failure, and renal dysfunction: The vicious circles. In Progress in Cardiovascular Diseases (Vol. 62, Issue 4, pp. 298–302). Elsevier BV. https://doi.org/10.1016/j.pcad.2019.07.003 DOI: https://doi.org/10.1016/j.pcad.2019.07.003
Ghorbani, A., Rashidi, R., & Shafiee-Nick, R. (2019). Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. In Biomedicine & Pharmacotherapy (Vol. 111, pp. 947–957). Elsevier BV. https://doi.org/10.1016/j.biopha.2018.12.127 DOI: https://doi.org/10.1016/j.biopha.2018.12.127
Bi, Y., Wang, J., Li, M., Zhou, J., & Sun, X. (2019). The association between pancreas steatosis and metabolic syndrome: A systematic review and meta‐analysis. In Diabetes/Metabolism Research and Reviews (Vol. 35, Issue 5). Wiley. https://doi.org/10.1002/dmrr.3142 DOI: https://doi.org/10.1002/dmrr.3142
Ahriyasna, R., Agustini, T. W., Djamiatun, K., & Primal, D. (2021). The improvement of insulin resistance and the antioxidant capacity in type 2 diabetes mellitus rats with whiteleg shrimp shell powder (Litopenaeus vannamei). In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, pp. 703–711). HACCP Consulting. https://doi.org/10.5219/1684 DOI: https://doi.org/10.5219/1684
Duarte, J., Francisco, V., & Perez-Vizcaino, F. (2014). Modulation of nitric oxide by flavonoids. In Food Funct. (Vol. 5, Issue 8, pp. 1653–1668). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c4fo00144c DOI: https://doi.org/10.1039/C4FO00144C
Petrelli, A., Atkinson, M. A., Pietropaolo, M., & Giannoukakis, N. (2021). Modulation of Leukocytes of the Innate Arm of the Immune System as a Potential Approach to Prevent the Onset and Progression of Type 1 Diabetes. In Diabetes (Vol. 70, Issue 2, pp. 313–322). American Diabetes Association. https://doi.org/10.2337/dbi20-0026 DOI: https://doi.org/10.2337/dbi20-0026
Hebi, M., Hajji, L., & Eddouks, M. (2019). Effect of Flavonoid-rich Extract of Tamarix Articulata Vahl. on Glucose and Lipid Metabolism in Normal and Diabetic Rats. In Cardiovascular & Hematological Agents in Medicinal Chemistry (Vol. 16, Issue 2, pp. 94–105). Bentham Science Publishers Ltd. https://doi.org/10.2174/1871525717666181211143858 DOI: https://doi.org/10.2174/1871525717666181211143858
Mirmalek, S. A., Gholamrezaei Boushehrinejad, A., Yavari, H., Kardeh, B., Parsa, Y., Salimi-Tabatabaee, S. A., Yadollah-Damavandi, S., Parsa, T., Shahverdi, E., & Jangholi, E. (2016). Antioxidant and Anti-Inflammatory Effects of Coenzyme Q10 on L-Arginine-Induced Acute Pancreatitis in Rat. In Oxidative Medicine and Cellular Longevity (Vol. 2016, pp. 1–8). Hindawi Limited. https://doi.org/10.1155/2016/5818479 DOI: https://doi.org/10.1155/2016/5818479
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Potravinarstvo Slovak Journal of Food Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.