The biochemical changes in legumes during high-temperature micronization


  • Otari Sesikashvili Akaki Tsereteli State University, Faculty of Engineering-Technical, Department of Mechanical engineering, Tamar – Mepe str. 59, 4600 Kutaisi, Georgia, Tel.: +995 593 96 62 42
  • Elene Gamkrelidze Akaki Tsereteli State University, Faculty of Engineering-Technological, Department of Chemical technology and Ecology, Tamar – Mepe str. 59, 4600 Kutaisi, Georgia, Tel.: +995 593 352781
  • Nodari Mardaleishvili Akaki Tsereteli State University, Faculty of Engineering-Technical, Department of Mechanical engineering, Tamar – Mepe str. 59, 4600 Kutaisi, Georgia, Tel.: +995 558 368022
  • Gia Dadunashvili Akaki Tsereteli State University, Faculty of Engineering-Technical, Department of Mechanical engineering, Tamar – Mepe str. 59, 4600 Kutaisi, Georgia, Tel.: +995 577 32 10 56
  • Shalva Tsagareishvili LTD ,,Kutaisi 2021“, Manager. 1 Lane, Nikea str. 4, 4600 Kutaisi, Georgia, Tel.: +995 596 44 44 50
  • George Pkhakadze San Diego State University, Department of Chemistry, Merab Kostava Str. 5, 0108, Tbilisi, Georgia



bean, lupine, starch, glucose, high-temperature micronization, infrared heat treatment


The article considers the change in chemical and biological characteristics in some legumes grains, under conditions of high-temperature micronization with different moisture contents during heat treatment with infrared rays. The heat treatment of grains was carried out on a laboratory apparatus with a quartz radiant infrared panel. The temperature variation in the heat treatment zone occurred due to changing the distance between the panel and the surface of grains. The grain temperature was determined using a laser thermometer, and with a timer. To determine chemical and biological characteristics, we used a special optical density metering device. We have studied: 1. The dependence of starch content on the temperature in the changing initial moisture content. We found that after 30 seconds of high-temperature micronization of, “Tsanava“ beans at a grain moisture content of 12.7%, the starch content in the grain increases from 39.65% to 40.12%, then gradually decreases, and at 18.3% moisture content, it increases from 38.71% to 41.2%, with a moisture content of 28.6% it increases from 37.36% to 42.42%. Similar processes are also observed for the beans “field red“ and “white lupine“; 2. The dependence of glucose content on the temperature in the changing initial moisture content. As the mass fraction of starch decreases, the percentage of sugar (in terms of the equivalent amount of glucose) at a moisture content of 12.7% at the initial stage increases from 1.36% to 1.46%, and then the percentage of sugar increases relatively quickly to 1.64%, at a moisture content of 18.3% it increases from 1.3% to 1.38%, and then increases to 1.51, with a moisture content of 28.6%, it increases from 1.28% to 1.35% and then increases to 1.54. Similar processes are also observed for the beans “field red“ and “white lupine“.


Download data is not yet available.


Metrics Loading ...


Afzal, M., Alghamdi, S. S., Migdadi, H. H., Khan, M. A., Mirza, S. B., El- Harty, E. 2020. Legume genomics and transcriptomics: From classic breeding to modern tech-nologies. Saudi Journal of Biological Sciences, vol. 27, no. 1, p. 543-555. DOI:

Ba, K., Aguedo, M., Tine, E., Paquot, M., Destain, J., Thonart, P. 2013. Hydrolysis of starches and flours by sorghum malt amylases for dextrins production. European Food Research and Technology, vol. 236, no.5, p. 905-918. DOI:

Carvalho, A. F. U., Farias, D. F., Da Rocha-Bezerra, L. C. B., Sousa, N., Cavalheiro, M. G., Fernandes, G. S., Brasil, I. C. F., Maia, A. A. B., Sousa, D., Vasconcelos, I. M., Gouveia, S. T., Machado, O. 2011. Preliminary assessment of the nutritional composition of underexploited wild legumes from semi-arid Caatinga and moist forest environments of northe¬astern Brazil. Journal of Food Composition and Analysis, vol. 24. no. 4-5, p. 487-493. DOI:

Deepa, C., Hebbar, H. U. 2016. Effect of High-Tempera-ture Short-Time ‘Micronization’ of Grains on Product Quality and Cooking Characteristics. Food Engineering Reviews, vol. 8, no. 2, p. 201-213. DOI:

Deepa, C., Hebbar, H. U. 2017. Effect of micronization of maize grains on shelf‐life of flour. Food processing and preservation, vol. 41, no. 5, p. 13-19. DOI:

Dias, A. S., Bagulho, A. S., Lidon, F. C. 2008. Ultra- structure and biochemical traits of bread and durum wheat grains under heat stress. Brazilian Journal of Plant Physiology, vol. 20, no. 4, p. 553-566. DOI:

Fast, R., Kolduell, E. 2007. Khlopia na zavtrak (Breakfast cereals). Scientific foundations and technologies, St. Peters¬burg, Profession, vol. 528. (in Russian)

GOST 10845. 1998. Zerno I produkti ego pererabotki. Metod opredelenia krakhmala (Grain and products of its process¬sing. Method for determination of starch). Moskow, Interstate Council for Standardization, Metrology and Certification. (in Russian)

GOST 13586.5. 2015. Zerno. Metod opredelenia vlazhnosti (Grain. Moisture determination method (with amendments.) Moskow, Interstate Council for Standardization, Metrology and Certification. (in Russian)

GOST 29177. 2004. Zerno. Metodi opredelenia stepeni destrukcii krakhmala (Grain. Methods for determining the degree of starch destruction). Moskow, Interstate Council for Standardization, Metrology and Certification. (in Russian)

Gunkin, B. A. 1992. Optimizacia rezhimov IK obrabotki zerna rzhi po naboru biokhimicheskikh pokazatelei (Optimization of IR treatment modes for rye grain by a set of biochemical parameters) : dissertation theses. Moskow, MSUFI. (in Russian)

Iheke, E., Oshodi, A., Omoboye, A. J., Ogunlalu, O. 2017. Effect of Fermentation on the Physicochemical Pro-perties and Nutritionally Valuable Minerals of Locust Bean (Parkia biglobosa). American Journal of Food Technology, vol. 12, no. 6, p. 379-384. DOI:

ISO 1446. 2018. Green coffee – Determination of the moi- sture content – Basic reference method. Geneva: Interna- tional Organization for Standardization.

ISO 3946. 1982. Starches and derived products — Determination of total phosphorus content. Geneva: Interna- tional Organization for Standardization.

ISO 6493. 2000. Animal feeding stuffs — Determination of starch content. Geneva: International Organization for Standardization.

ISO 3166. 2015. Codes for the representation of names of countries and their subdivisions - Part 1: Country codes (ISO 3166-1:2013)

Jeong, D., Han, J. A., Liu, Q., Chung, H. J. 2018. Effect of processing, storage, and modification on in vitro starch digestion characteristics of food legumes. A review. Food hydrocolloids, vol. 90, p. 367-376. DOI:

Jeong, Se-Ho., Kim, E-Ch., Lee, D-Un. 2020. The Impact of a Consecutive Process of Pulsed Electric Field, Sous-Vide Cooking, and Reheating on the Properties of Beef Semitendinosus Muscle. Foods, vol. 9, no. 11, p. 1674. DOI:

Kennedy, G., Burlingame, B. 2003. Analysis of food composition data on rice from a plant genetic resources perspective. Food Chemistry, vol. 80, no. 4, p. 589-596. DOI:

Khosny, R. K. 2006. Zerno i zernovie produkti (Grain and grain products. Scientific foundations and technologies. St. Petersburg, Profession, 330 p. (in Russian)

Klug, T., Collado, E., Martínez-Sánchez, A., Gómez, P. 2020. Viability of sous vide, microwave and high pressure processing techniques on quality changes during shelf life of fresh cowpea puree. Food Science and Technology International, vol. 26, no. 8, p. 706-714. DOI:

Kupkanchanakul, W., Thongngam, M., Shi,Y.-Ch., Naivikul, O. 2018. Role of amylolytic activities during pregermi nation on rice kernel morphology and physicochemical pro- perties of isolated starch. Cereal Chemistry, Project: Rice and Rice starch, vol. 95, no. 4, p. 543-554. DOI:

Lizenko, G. A., Bobrovnik, L. D., Nazarova, O. P. et al. 1985. Isledovanie modificirovannikh krakhmalov metodom derivatografa (Study of modified starches by the derivatograph method). Sugar industry, vol. 6. (in Russian)

Lund, M. N., Ray, C. 2017. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. Journal of Agricultural and Food Chemistry, vol. 65, no. 23, p. 4537-4552. DOI:

Lykov, A. V., Mikhailov, Y. A. 1972. Theory of heat and mass-transfer. University of Michigan, USA : Israel Program for Scientific Translations publishers, 535 p. ISBN-10 0706505611.

Mahgoub, S. A., Mohammed, A. T., Mobarak, El.-A. 2020. Physiochemical, Nutritional and Technological Properties of Instant Porridge Supplemented with Mung Bean. Food and Nutrition Sciences, vol. 11, no. 12, p. 1078-1095. DOI:

Mainali, B. P., Kim, H. J., Yoon, Y. N., Oh, I. S., Do Bae, S. 2014. Evaluation of different leguminous seeds as food sources for the bean bug Riptortus pedestris. Journal of Asia-Pacific Entomology, vol. 17, no. 2, p. 115-117. DOI:

Makarov, E. 2011. Enzhinernie raschoty v Mathcad 15 (Engineering Calculations in Mathcad 15). Moskow-St. Petersburg, Piter, 404 p. ISBN 978-5-459-00357-4. (in Russian)

Markov, P., Markov, D., Vodenicharova, A. 2016. Zdorovie i dieticheskie kharakteristiki zerna na osnove meditsinskikh dannikh (Healthy and dietary characteristics of grain on the basis of medical evidence). Science, Thought: electronic periodic e-journal, vol. 12, p. 24-29. (in Russian)

Moreno-Valdespino, C. A., Luna-Vital, D., Camacho-Ruiz, R. M., Mojica, L. 2019. Bioactive proteins and phytochemicals from legumes: mechanisms of action preventing obesity and type-2 diabetes. Food Research International, vol. 130, p. 108905. DOI:

Murphy, K. J., Marques, L. I., Sánchez-Tainta, A. 2018. Cereals and legumes. In: Sánchez-Villegas, A., Sánchez-Tainta, A. The prevention of cardiovascular disease through the Mediterranean diet. 1. Massachusetts : Elsevier, p. 111-132. ISBN 9780128112595. DOI:

Ntatsi, G., Gutiérrez-Cortines, M. E., Karapanos, I., Barros, A., Weiss, J., Balliu, A., Savvas, D. 2018. The quality of leguminous vegetables as influenced by preharvest factors. Scientia Horticulturae, vol. 232, p. 191-205. DOI:

Olaleye, H., Oresanya, T., Ogundipe, O. O. 2020. Comparative study on proximate and antinutritional factors of dehulled and undehulled fermented Lyon bean (Mucuna cochinchinensis). Food Research, vol. 4, no. 5, p. 1611-1615. DOI:

Perez-Maldonado, R. A., Mannion, P. F., Farell, D. J. 2002. Effects of heat treatment on the inhibitor activity. British Poultry Science, vol. 44, no. 2, р. 299-308. DOI:

Recommendations for healthy. 2006. Recommendations for healthy nutrition for the population of Bulgaria. (18-65 let), MZ. S., 2006. 40 p.

Samchenko, О. 2014. Bobovie: Perspektivi ispolzovania dlia optimizatsii khimicheskogo sostava miasnikh polufabrikatov (Legumes: prospects of use for optimization of the chemical composition of semi-finished meat products). Science and modernity, vol. 28, p. 172-176. (in Russian)

Sivakanthan, S., Nithyanantharajah, K., Vasantharuba, S., Sandrasegarampillai, B. 2009. Biochemical Changes Associated with Germinating Rice Grains and Germination Improvement. Rice Science, vol. 16, no. 3, p. 240-242.

Skurikhin, I. M., Tutelyan, V. A. 2002. Khimicheskii sostav russkikh pishevikh produktov (The chemical composition of Russian food products). Мoskow, Russia : DeLi print, 236 p. ISBN 5-94343-028-8. (in Russian)

Šimurina, O. D., Filipčev, B. V., Marić, B. D., Cve-tković, B. R, Solarov, M. I. Bodroža. 2018. Comparative study on the physico-chemical, textural and thermal properties of instant porridges based on spelt and oats. Food and Feed Research, vol. 45, no. 1, p. 27-35. DOI:

Teixeira, D. C., Farias, D. F., Urano Carvalho, A. F., Arantes, M. R., Oliveira, J. T. A., Sousa, D. O. B., Pereira, M. L., Oliveira, H. D., Andrade-Neto, M., Vasconcelos, I. M. 2013. Chemical Composition, Nutri-tive Value and Toxicological Evaluation of Bauhinia cheilantha Seeds. A Legume from Semiarid Regions Widely Used in Folk Medicine. Hindawi Publishing Corporation BioMed Research International, vol. 2013, p. 1-7. DOI:

Tóth, T., Bystricka, J., Tomáš, J., Siekel, P., Kovarovič, J., Lenkova, M. 2018. Effect of sulphur fertilization on contents of phenolic and sulphuric compounds in onion (Allium cepa L.). Journal of Food & Nutrition Research, vol. 57, no. 2, p.170-178.

Trugo, L. C., Donangelo, C. M., Trugo, N. M. F., Bach Knudsen, K. E. 2000. Effect of heat treatment on nutritional quality of germinated legume seeds. Journal of Agricultural and Food Chemistry, vol. 48, no. 6, p. 2082-2086. DOI:

Vadivel, V., Nandety, A., Biesalski, H. K. 2011. Anti-oxidant potential and health relevant functionality of tra-ditionally processed Cassia hirsuta L. seeds: an Indian und- erutilized food legume. Plants Foods for Human Nutrition, vol. 66. p. 245-253. DOI:

Veluppillai, S., Nithyanantharajah, K., Vasantharuba, S., Balakumar, S., Arasaratnam, V. 2009. Biochemical Changes Associated with Germinating Rice Grains and Germination Improvement. Rice Science, vol. 16, no. 3, p. 240-242. DOI:

Xu, Z., Leong, S. Y., Farid, M., Oey, I. 2020. Understanding the Frying Process of Plant-Based Foods Pretreated with Pulsed Electric Fields Using Frying Models. Foods, vol. 9, no. 7, p. 949. DOI:



How to Cite

Sesikashvili, O., Gamkrelidze, E., Mardaleishvili, N., Dadunashvili, G., Tsagareishvili, S., & Pkhakadze, G. (2021). The biochemical changes in legumes during high-temperature micronization. Potravinarstvo Slovak Journal of Food Sciences, 15, 555–565.

Most read articles by the same author(s)