Microbiological, chemical and organoleptic evaluation of fresh fish and its products irradiated by gamma rays


  • Amal Nasser Al-Kuraieef Princess Nourah Bint Abdulrahman University, Nutrition and Food Sciences Department, Riyadh, Saudi Arabia, PO Box 84428, Tel.: +966505218553




Microbiological, Chemical, Organoleptic, Fish, Irradiated


The present study evaluated the microbiological, chemical, and organoleptic aspects of irradiated fresh fish and its products to extend their shelf life. Fresh fish and its products were irradiated at three doses (1.5, 3.0, and 4.5 kGy) used for preservation to study the effects of irradiation on their microbiological properties, fatty acid composition, and organoleptic properties. Irradiated fresh bolti fish, smoked herring, and smoked mackerel were evaluated microbiologically, chemically, and organoleptically. Radiation treatment not only reduced the counts of aerobic bacteria, fecal streptococci, molds, and yeasts but also destroyed all the Staphylococcus aureus cells, improving the hygienic quality of the fresh and smoked fish samples. Irradiation increased the peroxide, acid, and thiobarbituric acid values, but they remained within acceptable levels. No new fatty acids or other artifacts due to irradiation were observed. Irradiation of 4.5 kGy greatly reduced the organoleptic quality scores of fresh bolti fish, indicating that the optimum radiation dose for this fish was 3.0 kGy. Smoked herring and mackerel could be irradiated with up to 4.5 kGy without adverse effects on their organoleptic properties.


Download data is not yet available.


Metrics Loading ...


Ahmed, M. K., Hasan, M., Alam, M. J., Ahsan, N., Islam, M. M., Akter, M. S. 2009. Effect of gamma radiation in combination with low temperature refrigeration on the chemical, microbiological and organoleptic changes in pampus chinensis (Euphrasen, 1788). World J. Zool., vol. 4, no. 1, p. 9-13.

Ahn, H. J., Lee, C. H., Lee, K. H., Kim, J. H., Cha, B. S., Byun, M. W. 2000. Processing of low salted and fermented shrimp using gamma irradiation before optimum fermentation. Korean Journal of Food Science and Technology, vol. 32, no. 5, p.1107-1113.

Alam, M., Ahmed, K., Shahin, M. 2009. Effects of gamma radiation and-20° C temperatures on the shelf life of Hilsa, Tenualosa ilisha (ham.-Buch. 1822). Bangladesh J. Fish Res., vol. 13, no. 2, p. 153-60.

Al-Kahtani, H. A., Abu-Tarboush, H. M., Bajaber, A. S., Atia, M., Abou-Arab, A. A., El-Mojaddidi, M. A. 1996. Chemical changes after irradiation and post-irradiation storage in Tilapia and Spanish Mackerel. J. Food Sci., vol. 61, no. 4, p. 729-33. https://doi.org/10.1111/j.1365-2621.1996.tb12191.x DOI: https://doi.org/10.1111/j.1365-2621.1996.tb12191.x

AOAC. 1990. Official methods of analysis of the association of official analytical chemists. Association of Official Analytical Chemists. 15th ed. Arlington, Virginia : AOAC, p. 977.

APHA. 1998. Standard methods for the examination of water and wastewater. 20th ed. Washington : APHA, 2671 p. ISBN 0-87553-235-7.

Badr, H. M. 2012. Control of the potential health hazards of smoked fish by gamma irradiation. Int. J. Food Microbiol., vol. 154, no. 3, p. 177-186. https://doi.org/10.1016/j.ijfoodmicro.2011.12.037 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.12.037

Brennan, J. G. 2005. Food processing: handbook. Weinheim, Germany : Wiley-VCH., p. 105-110. ISBN 9783527607570. https://doi.org/10.1002/3527607579 DOI: https://doi.org/10.1002/3527607579

Byun, H. G., Taekil, E., Jung, W-K., Kim, S-K. 2008. Characterization of fish oil extracted from fish processing by-products. Preventive Nutrition and Food Science, vol. 13, no. 1, p. 7-11. https://doi.org/10.3746/jfn.2008.13.1.007 DOI: https://doi.org/10.3746/jfn.2008.13.1.007

Chouliara, I., Savvaidis, I. N., Panagiotakis, N. , Kontominas, M. G. 2004. Preservation of salted, vacuum-packaged, refrigerated sea bream (Sparus aurata) fillets by irradiation: Microbiological, chemical and sensory attributes. Food Microbiol., vol. 21, no. 3, p. 351-359. https://doi.org/10.1016/S0740-0020(03)00065-0 DOI: https://doi.org/10.1016/S0740-0020(03)00065-0

Chun, H. H., Kim, J. Y., Lee, B. D., Yu, D. J., Song, K. B. 2010. Effect of UV-C irradiation on the inactivation of inoculated pathogens and quality of chicken breasts during storage. Food Control, vol. 21, no. 3, p. 276-280. https://doi.org/10.1016/j.foodcont.2009.06.006 DOI: https://doi.org/10.1016/j.foodcont.2009.06.006

Demartini, E., Gaviglio, A., La Sala, P., Fiore, M. 2019. Impact of information and Food Technology Neophobia in consumers’ acceptance of shelf-life extension in packaged fresh fish fillets. J. Sustainable Production and Consumption, vol. 17, p.116-125. https://doi.org/10.1016/j.spc.2018.09.006 DOI: https://doi.org/10.1016/j.spc.2018.09.006

Du, M., Ahn, D. U., Nam, K. C., Sell, J. L. 2000. Influence of dietary conjugated linoleic acid on volatile profiles, color and lipid oxidation of irradiated raw chicken meat. Meat Sci., vol. 56, no. 4, p. 387-395. https://doi.org/10.1016/S0309-1740(00)00067-X DOI: https://doi.org/10.1016/S0309-1740(00)00067-X

Duliu, O. G., Ferdes, M., Ferdes, O. S. 2004. EPR study of some irradiated food enzymes. J. Radioanal. Nucl. Chem., vol. 260, p. 273. https://doi.org/10.1023/B:JRNC.0000027095.19005.e7 DOI: https://doi.org/10.1023/B:JRNC.0000027095.19005.e7

Erkan, N., Özden, Ö. 2007. The changes of fatty acid and amino acid compositions in sea bream (Sparus aurata) during irradiation process. Radiat. Phys. Chem., vol. 76, no. 10, p. 1636-1641. https://doi.org/10.1016/j.radphyschem.2007.01.005 DOI: https://doi.org/10.1016/j.radphyschem.2007.01.005

Fallah, A. A., Tajik, H., Rohani, S. M. R., Rahnama, M. 2008. Microbial and sensory characteristics of camel meat during refrigerated storage as affected by gamma irradiation. Pak. J. Biol. Sci., vol. 11, no. 6, p. 894-899. https://doi.org/10.3923/pjbs.2008.894.899 DOI: https://doi.org/10.3923/pjbs.2008.894.899

Farkas, J. 2006. Irradiation for better foods. Trends in Food Science & Technology, vol. 17, no. 4, p. 148-152.‏ https://doi.org/10.1016/j.tifs.2005.12.003 DOI: https://doi.org/10.1016/j.tifs.2005.12.003

Javan, S., Motallebi, A. A. 2015. Changes of fatty acid profile during gamma irradiation of rainbow trout (Oncorhynchus mykiss) fillets. Int. J. Meat. Sci., vol. 5, no. 1, p. 1-7. https://doi.org/10.3923/ijmeat.2015.1.7 DOI: https://doi.org/10.3923/ijmeat.2015.1.7

Javanmard, M., Rokni, N., Bokaie, S., Shahhosseini, G. 2006. Effects of gamma irradiation and frozen storage on microbial, chemical and sensory quality of chicken meat in Iran. Food Control, vol. 17, no. 6, p. 469-473. https://doi.org/10.1016/j.foodcont.2005.02.008 DOI: https://doi.org/10.1016/j.foodcont.2005.02.008

Kakatkar, A. S., Gautam, R. K., Shashidhar, R. 2017. Combination of glazing, nisin treatment and radiation processing for shelf-life extension of seer fish (Scomberomorous guttatus) steaks. Radiation Physics and Chemistry, vol. 130, p. 303-305.‏ https://doi.org/10.1016/j.radphyschem.2016.09.017 DOI: https://doi.org/10.1016/j.radphyschem.2016.09.017

Lacroix, M., Ouattara, B. 2000. Combined industrial processes with irradiation to assure innocuity and preservation of food products — a review. Food Res. Int., vol. 33, no. 9, p. 719-24. https://doi.org/10.1016/S0963-9969(00)00085-5 DOI: https://doi.org/10.1016/S0963-9969(00)00085-5

Lynch, S. M., Frei, B. 1993. Mechanism of copper-and iron-dependent oxidative modification of human low density lipoprotein. J. Lipid Research, vol. 34, no. 10, p. 1745-1753. https://doi.org/10.1016/S0022-2275(20)35737-0 DOI: https://doi.org/10.1016/S0022-2275(20)35737-0

Maturin, L., Peeler, J. T. 2001 BAM Chapter 3: Aerobic Plate Count. US : FDA/CFSAN, 11 p.

Mbarki, R., Sadok, S., Barkallah, I. 2009. Quality changes of the Mediterranean horse mackerel (Trachurus mediterraneus) during chilled storage: The effect of low-dose gamma irradiation. Radiat. Phys. Chem., vol. 78, no. 4, p. 288-292. https://doi.org/10.1016/j.radphyschem.2008.12.004 DOI: https://doi.org/10.1016/j.radphyschem.2008.12.004

Mendes, R., Silva, H. A., Nunes, M. L., Empis, J. M. A. 2005. Effect of low-dose irradiation and refrigeration on the microflora, sensory characteristics and biogenic amines of Atlantic horse mackerel (Trachurus trachurus). Eur. Food Res. Technol., vol. 221, p. 329-335. https://doi.org/10.1007/s00217-005-1172-x DOI: https://doi.org/10.1007/s00217-005-1172-x

Moini, S., Tahergorabi, R., Hosseini, S. V., Rabbani, M., Tahergorabi, Z., Feas, X., Aflaki, F. 2009. Effect of gamma radiation on the quality and shelf life of refrigerated rainbow trout (Oncorhynchus mykiss) fillets. J. Food Prot., vol. 72, no. 7, p. 1419-1426. https://doi.org/10.4315/0362-028x-72.7.1419 DOI: https://doi.org/10.4315/0362-028X-72.7.1419

Nickelson, R. I., McCarthy, S., Finne, G. 2001. Fish, crustaceans, and precooked seafoods. In Downes, F. P., Ito, K. Compendium of methods for the microbiological examination of foods. Washington, USA : American Public Health Association, p 497-505. ISBN 9780875532738. https://doi.org/10.2105/9780875531755ch48 DOI: https://doi.org/10.2105/9780875531755ch48

Noomhorm, A., Vongsawasdi, P., Inprasit, C., Yamprayoon, J., Sirisoontaralak, P., Ingles, M. E. A., Adulpichit, A. 2003. Radiation processing for safe, shelf-stable and ready-to-eat food. Austria : IAEA, 264 p.‏ ISBN 92–0–100703–5.

Oraei, M., Motalebi, A., Hoseini, E., Javan, S., Hemmasi, A. 2011. Effect of gamma irradiation on fatty acid composition of rainbow trout (Oncorhynchus mykiss) fillets. Iran J. Fish Sci., vol. 10, no. 2, p. 276-285.

Özden, Ö., Erkan, N. 2010. Impacts of gamma radiation on nutritional components of minimal processed cultured sea bass (Dicentrarchus labrax). Iran J. Fish Sci., vol. 9, no. 2, p. 265-278.

Özkan, Ö., Müge, İ., Nuray, E. 2007. Effect of different dose gamma radiation and refrigeration on the chemical and sensory properties and microbiological status of aqua cultured sea bass (Dicentrarchus labrax). Radiat. Phys. Chem., vol. 76, no. 7, p. 1169-1178. https://doi.org/10.1016/j.radphyschem.2006.11.010 DOI: https://doi.org/10.1016/j.radphyschem.2006.11.010

Prakash, S., Jeyasanta, K. I., Edward, J. P., Patterson, J. 2014. Effect of gamma irradiation on the microbial quality of dried fishes. Asia J. Appl. Microbiol., vol. 1, p. 26-48.

Rostamzad, H., Shabanpour, B., Kashaninejad, M., Shabani, A. 2010. Inhibitory impacts of natural antioxidants (ascorbic and citric acid) and vacuum packaging on lipid oxidation in frozen Persian sturgeon fillets. Iran J. Fish. Sci., vol. 9, p. 279-92.

Sedeh, F. M., Arbabi, K., Fatolahi, H., Abhari, M. 2007. Using gamma irradiation and low temperature on microbial decontamination of red meat in Iran. Indian J. Microbiol., vol. 47, p. 72-6. https://doi.org/10.1007/s12088-007-0013-y DOI: https://doi.org/10.1007/s12088-007-0013-y

Tallent, S., Hait, J., Bennett, R. W., Lancette, G. A. 2001. Bam Chapter12: Staphylococcus aureus. US : FDA/CFSAN, 6 p.

Tournas, V., Stack, M. E., Mislivec, P. B., Koch, H. A., Bandler, R. 2001. BAM Chapter 18: Yeasts, Molds and Mycotoxins. US : FDA/CFSAN, 12 p.

Turgis, M., Han, J., Borsa, J., Lacroix, M. 2008. Combined effect of natural essential oils, modified atmosphere packaging, and gamma radiation on the microbial growth on ground beef. J. Food Prot., vol. 71, p. 1237-1243. https://doi.org/10.4315/0362-028x-71.6.1237 DOI: https://doi.org/10.4315/0362-028X-71.6.1237

WHO. 2000. The WHO golden rules for safe food preparation. Geneva, Switzerland: WHO, 1 p.



How to Cite

Al-Kuraieef, A. N. (2021). Microbiological, chemical and organoleptic evaluation of fresh fish and its products irradiated by gamma rays. Potravinarstvo Slovak Journal of Food Sciences, 15, 95–100. https://doi.org/10.5219/1505