Oryctes rhinoceros larva oil supplementation improves tissue antioxidant status in cholesterol-fed rats


  • Olarewaju Oluba Landmark University, College of Pure & Applied Sciences, Department of Biochemistry, Omu-Aran, P.M.B. 1001, Omu-Aran, Nigeria, Tel.: +2347030496639 https://orcid.org/0000-0002-5107-6959




edible insect, Oryctes rhinoceros larva oil, cholesterol-based diet, oxidative stress, antioxidant


Experimental evidence from previous study has demonstrated the hypolipidemic effects of Oryctes rhinoceros oil (ORO) when fed as a supplement to a cholesterol-based diet. Due to renew interest in the consumption of insect derived oil, the present study was designed to elucidate the effect of Oryctes rhinoceros oil (ORO) supplementation in comparison to vitamin E on oxidative status in some tissues of rats fed a cholesterol-based diet. Forty (40) Swiss albino rats were divided into 4 groups (n = 10) and maintained on a basal diet (cholesterol free as control), a cholesterol-based diet (5% cholesterol as cholesterol), a cholesterol-based diet supplemented with ORO (cholesterol + ORO) and a cholesterol-based diet supplemented with vitamin E (Cholesterol + vit E) for 10 weeks. Animals in the cholesterol group had a significantly
(p <0.05) higher malondialdehyde (MDA), conjugated diene and nitric oxide concentrations in the serum, liver, heart, kidney and lung compared to control, cholesterol + ORO and cholesterol + vit E groups. Tissue glutathione (GSH) concentration was significantly (p <0.05) higher in rats fed cholesterol-based diet supplemented with ORO and vitamin E compared to those fed cholesterol-based diet alone. Xanthine oxidase activity was significantly (p <0.05) reduced in tissues of rats fed ORO and vitamin E supplemented diets compared to cholesterol rat group. In addition, catalase and superoxide dismutase activities in the various tissues examined were significantly (p <0.05) higher in both ORO and vitamin E supplemented groups compared to the cholesterol group. No significant difference was observed between animals fed ORO and vitamin E supplemented diets. These results showed that Oryctes rhinoceros larva oil exhibited similar protective effects to vitamin E against diet-induced oxidative stress in rats. In addition, data from this study showed that Oryctes rhinoceros larva oil possessed antioxidant property. Overall, the potential nutritional benefit of Oryctes rhincoceros larva oil consumption on cardiovascular health could possibly involve its ability to upregulation of cellular antioxidant defense mechanisms.


Download data is not yet available.


Metrics Loading ...


Adefegha, S. A., Oboh, G., Adefegha, O. M., Boligon, A. A., Athayde, M. L. 2014. Antihyperglycemic, hypolipidemic, hepatoprotective and antioxidative effects of dietary clove (Szyzgium aromaticum) bud powder in a high‐fat diet/streptozotocin‐induced diabetes rat model. Journal of the Science of Food and Agriculture, vol. 94, no. 13, p. 2726-2737. https://doi.org/10.1002/jsfa.6617 DOI: https://doi.org/10.1002/jsfa.6617

Aebi, H. 1984. Catalase in vitro. In Fleischer, S., Packer, L. Methods in Enzymology. Elsevier. vol. 105, p. 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3 DOI: https://doi.org/10.1016/S0076-6879(84)05016-3

Belghit, I., Liland, N. S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbø, R., Krogdahl, Å., Lock, E. J. 2019. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, vol. 503, p. 609-619. https://doi.org/10.1016/j.aquaculture.2018.12.032 DOI: https://doi.org/10.1016/j.aquaculture.2018.12.032

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., Kalayci, O. 2012. Oxidative stress and antioxidant defense. World Allergy Organization Journal, vol. 5, no. 1, 9 p. https://doi.org/10.1097/WOX.0b013e3182439613 DOI: https://doi.org/10.1097/WOX.0b013e3182439613

Bouayed, J., Bohn, T. 2010. Exogenous antioxidantsdouble-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Medicine and Cellular Longevity, vol. 3, no. 4, p. 228-237. https://doi.org/10.4161/oxim.3.4.12858 DOI: https://doi.org/10.4161/oxim.3.4.12858

Buege, J. A., Aust, S. D. 1978. Microsomal lipid peroxidation. In Fleischer, S., Packer, L. Methods in Enzymology. Elsevier. vol. 52, p. 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6 DOI: https://doi.org/10.1016/S0076-6879(78)52032-6

Celebi, S., Utlu, N. 2006. Influence of animal and vegetable oil in layer diets on performance and serum lipid profile. International Journal of Poultry Science, vol. 5, no. 4, p. 370-373. https://doi.org/10.3923/ijps.2006.370.373 DOI: https://doi.org/10.3923/ijps.2006.370.373

Chang, C. I., Liao, J. C., Kuo, L. 2001. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Research, vol. 61, no. 3, p. 1100-1106. Available at: https://cancerres.aacrjournals.org/content/61/3/1100.short

Farombi, E. O., Nwaokeafor, I. A. 2005. Anti‐oxidant mechanisms of kolaviron: studies on serum lipoprotein oxidation, metal chelation and oxidative membrane damage in rats. Clinical and Experimental Pharmacoly and Physioogy, vol. 32, no. 8, p. 667-674. https://doi.org/10.1111/j.0305-1870.2005.04248.x DOI: https://doi.org/10.1111/j.0305-1870.2005.04248.x

Gomez‐Cabrera, M. C., Borrás, C., Pallardó, F. V., Sastre, J., Ji, L. L., Viña, J. 2005. Decreasing xanthine oxidase‐mediated oxidative stress prevents useful cellular adaptations to exercise in rats. The Journal of Physiology, vol. 567, no. 1, p. 113-120. https://doi.org/10.1113/jphysiol.2004.080564 DOI: https://doi.org/10.1113/jphysiol.2004.080564

Gornall, A. G., Bardawill, C. J., David, M. M. 1949. Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, vol. 177, no. 2, p. 751-766. DOI: https://doi.org/10.1016/S0021-9258(18)57021-6

ILAR. 1985. Committee on Care, Use of Laboratory Animals, National Institutes of Health (US). Division of Research Resources. Guide for the care and use of laboratory animals. National Academies.

Kang, B. P., Bansal, M. P., Mehta, U. 1998. Selenium supplementation and diet induced hypercholesterolemia in the rat: changes in lipid levels, malonyldialdehyde production and the nitric oxide synthase activity. General Physiology and Biophysics, vol. 17, p. 71-78. Available at: http://www.gpb.sav.sk/1998/1998_01_71.pdf

Litwack, G., Bothwell, J. W., Williams, J. N., Elvehjem, C. A. 1953. A colorimetric assay for xanthine oxidase in rat liver homogenates. Journal of Biological Chemistry, vol. 200, no. 1, p. 303-310. Available at: https://www.ncbi.nlm.nih.gov/pubmed/13034787 DOI: https://doi.org/10.1016/S0021-9258(18)38465-5

McCord, J. M., Fridovich, I. 1969. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, vol. 244, no. 22, p. 6049-6055. Available at: http://www.jbc.org/content/244/22/6049.short DOI: https://doi.org/10.1016/S0021-9258(18)63504-5

Moron, M. S., Depierre, J. W., Mannervik, B. 1979. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 582, no.1, p. 67-78. https://doi.org/10.1016/0304-4165(79)90289-7 DOI: https://doi.org/10.1016/0304-4165(79)90289-7

Nevin, K. G., Rajamohan, T. 2006. Virgin coconut oil supplemented diet increases the antioxidant status in rats. Food Chemistry, vol. 99, no. 2, p. 260-266. https://doi.org/10.1016/j.foodchem.2005.06.056 DOI: https://doi.org/10.1016/j.foodchem.2005.06.056

Niki, E., Kawakami, A., Saito, M., Yamamoto, Y., Tsuchiya, J., Kamiya, Y. 1985. Effect of phytyl side chain of vitamin E on its antioxidant activity. Journal of Biological Chemistry, vol. 260, no. 4, p. 2191-2196. Available at: http://www.jbc.org/content/260/4/2191.short DOI: https://doi.org/10.1016/S0021-9258(18)89536-9

Ojieh, G. C., Idokpesi, G. O., Eidangbe, G. O., Omage, K., Oluba, O. M. 2009. Hydrogenation impairs the hypolipidemic and antioxidant effects of palm oil in rats. International Journal of Physical Sciences, vol. 4, no. 7, p. 407-411. Available at: http://www.academicjournals.org/ijps/PDF/pdf2009/July/Ojieh%20et%20al.pdf

Oluba, O. M. 2019. Erythrocyte Lipid and Antioxidant Changes in Plasmodium falciparum-infected Children Attending Mother and Child Hospital in Akure, Nigeria. Pakistan Journal of Biological Sciences, vol. 22, no. 6, p. 257-264. https://doi.org/10.3923/pjbs.2019.257.264 DOI: https://doi.org/10.3923/pjbs.2019.257.264

Oluba, O. M., Adeyemi, O., Adebisi, K. E., Isiosio, L. O., Aboluwoye, C. O. 2008b. Effects of dietary cholesterol on some serum enzymes. Journal of Medical Sciences, vol. 8, no. 4, p. 390-394. https://doi.org/10.3923/jms.2008.390.394 DOI: https://doi.org/10.3923/jms.2008.390.394

Oluba, O. M., Adeyemi, O., Ojieh, G. C., Aboluwoye, C. O., Eidangbe, G. O. 2008a. Comparative effect of soybean oil and palm oil on serum lipids and some serum enzymes in cholesterol-fed rats. European Journal of Scientific Research, vol. 23, no. 4, p. 559-566.

Oluba, O. M., Eidangbe, G. O., Ojieh, G. C., Idonije, B. O. 2011. Palm and Egusi melon oils lower serum and liver lipid profile and improve antioxidant activity in rats fed a high fat diet. International Journal of Medicine and Medical Sciences, vol. 3, no. 2, p. 47-51. Available at: http://www.academicjournals.org/app/webroot/article/article1378983845_Oluba%20et%20al.pdf

Oluba, O. M., Josiah, S. J., Fagbohunka, B. S. 2014. Effect of Oryctes rhinoceros larva oil supplementation on serum lipid profile and inflammatory markers in mice fed a cholesterol-based diet. Current Research – Cardiology, vol. 1, no. 2, p. 79-83. https://doi.org/10.4172/2368-0512.1000011 DOI: https://doi.org/10.4172/2368-0512.1000011

Pacher, P., Beckman, J. S., Liaudet, L. 2007. Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, vol. 87, no. 1, p. 315-424. https://doi.org/10.1152/physrev.00029.2006 DOI: https://doi.org/10.1152/physrev.00029.2006

Recknagel, R. O., Glende Jr, E. A. 1984. Spectrophotometric detection of lipid conjugated dienes. In Fleischer, S., Packer, L. Methods in Enzymology. Elsevier. vol. 105, p. 331-337. https://doi.org/10.1016/S0076-6879(84)05043-6 DOI: https://doi.org/10.1016/S0076-6879(84)05043-6

Sevanian, A., Hochstein, P. 1985. Mechanisms and consequences of lipid peroxidation in biological systems. Annual Review of Nutrition, vol. 5, p. 365-390. https://doi.org/10.1146/annurev.nutr.5.1.365 DOI: https://doi.org/10.1146/annurev.nu.05.070185.002053

Teoh, C. H. 2010. Key sustainability issues in the palm oil sector. documento de trabajo para las consultas con múltiples actores (encargado por el Grupo del Banco Mundial). 52 p. Available at: http://www.biofuelobservatory.org/Documentos/Otros/Palm-Oil-Discussion-Paper-FINAL.pdf

Thomas, J. P., Maiorino, M., Ursini, F., Girotti, A. W. 1990. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. Journal of Biological Chemistry, vol. 265, p. 454-461. Available at: http://www.jbc.org/content/265/1/454.short DOI: https://doi.org/10.1016/S0021-9258(19)40252-4

Traber, M. G., Atkinson, J. 2007. Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, vol. 43, no. 1, p. 4-15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024 DOI: https://doi.org/10.1016/j.freeradbiomed.2007.03.024

Uttara, B., Singh, A. V., Zamboni, P., Mahajan, R. T. 2009. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacoy, vol. 7, no. 1, p. 65-74. https://doi.org/10.2174/157015909787602823 DOI: https://doi.org/10.2174/157015909787602823

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, p. 44-84. https://doi.org/10.1016/j.biocel.2006.07.001 DOI: https://doi.org/10.1016/j.biocel.2006.07.001

Van Huis, A. 2013. Potential of insects as food and feed in assuring food security. Annual Review of Entomology, vol. 58, p. 563-583. https://doi.org/10.1146/annurev-ento-120811-153704 DOI: https://doi.org/10.1146/annurev-ento-120811-153704

Womeni, H. M., Linder, M., Tiencheu, B., Mbiapo, F. T., Villeneuve, P., Fanni, J., Parmentier, M. 2009. Oils of insects and larvae consumed in Africa: potential sources of polyunsaturated fatty acids. Oléagineux, Corps Gras, Lipides, vol. 16, no. 4-5-6, p. 230-235. https://doi.org/10.1051/ocl.2009.0279 DOI: https://doi.org/10.1051/ocl.2009.0279

Yang, H., Zhou, L., Wang, Z., Roberts, L. J., Lin, X., Zhao, Y., Guo, Z. 2009. Overexpression of antioxidant enzymes in ApoE-deficient mice suppresses benzo(a)pyrene-accelerated atherosclerosis. Atherosclerosis, vol. 207, no. 1, p. 51-58. DOI: https://doi.org/10.1016/j.atherosclerosis.2009.03.052



How to Cite

Oluba, O. (2019). Oryctes rhinoceros larva oil supplementation improves tissue antioxidant status in cholesterol-fed rats. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 815–822. https://doi.org/10.5219/1180