Recombinant metalloprotease as a perspective enzyme for meat tenderization
DOI:
https://doi.org/10.5219/1087Keywords:
meat tenderization, recombinant peptidase, M9 family peptidaseAbstract
eptidase family M9 (MEROPS database) is true collagenases and contains bacterial collagenases from Vibrio and Clostridium. One of the producers of M9A subfamily peptidase is Aeromonas salmonicida (locus - ASA_3723). The aim of the study was production of recombinant metallopeptidase Aeromonas salmonicida by transformation Pichia pastoris for further meat tenderization. Laboratory amounts of recombinant peptidase were obtained and test evaluation of enzyme activity was performed. Recombinant peptidase broke the peptide bond «Pro-Leu-Gly-Met-Trp-Ser-Arg» (one of the collagen chains, (Mw = 846.06)). The concentration of the substrate (peptide) after 180 min was 2 – fold decrease as compared with control. The maximum shear force of heat-treated samples had a 1.27 – fold decrease as compared with the control. As a result of histological studies of beef shank samples, the specific effect of the supernatant on the structure of connective tissue was established. Muscle fibers have not changed. The recombinant enzyme could be used for the meat tenderization.
Downloads
Metrics
References
Angelovičová, M., Mellen, M., Zajác, P., Čapla, J., Angelovič, M. 2018. Tibia mineralization of chickens determined to meat production using a microbial phytase. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 40-49. https://doi.org/10.5219/805 DOI: https://doi.org/10.5219/805
Antipova, L. V., Glotova, I. A. 2006. The use of secondary collagen containing raw materials of the meat industry. Improvement and development of new technologies based on the enzymatic processing of collagen-containing raw materials. SPb : GIORD, 384 p. ISBN 5-98879-007-0.
Bailey, A. J., Light, N. D. 1989. Connective Tissue in Meat and Meat Products. London, UK : Elsevier Applied Science, 355 p. ISBN 1851662847.
Bekhit, A. A., Hopkins, D. L., Geesink, G., Bekhit, A. A., Franks, P. 2014. Exogenous proteases for meat tenderization. Critical reviews in food science and nutrition, vol. 54, no. 8, p. 1012-31. https:// doi.org/10.1080/10408398.2011.623247 DOI: https://doi.org/10.1080/10408398.2011.623247
Eckhard, U., Schönauer, E., Brandstetter, H. 2013. Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T. J. Biol Chem., vol. 288, p. 20184-20194. https://doi.org/10.1074/jbc.M112.448548 DOI: https://doi.org/10.1074/jbc.M112.448548
Goodson, K. J., Morgan, W. W., Reagan, J. O., Gwartney, B. L., Courington, S. M., Wise, J. W., Savell, J. W. 2002. Beef customer satisfaction: Factors affecting consumer evaluations of clod steaks. Journal of Animal Science, vol. 80, no. 2, p. 401-408. DOI: https://doi.org/10.2527/2002.802401x
Guo, J., Ma, Y. 2008. High-level expression, purification and characteriza-tion of recombinant Aspergillus oyrzae alkaline protease in Pichia pastoris. Pro-tein Expression and Purification, vol. 58, p. 301-308. https://doi.org/10.1016/j.pep.2007.12.005 DOI: https://doi.org/10.1016/j.pep.2007.12.005
Chanalia, P., Gandhi, D., Attri, P., Dhanda, S. 2018. Extraction. purification and characterization of low molecular weight Proline iminopeptidase from probiotic L. plantarum for meat tenderization. International journal of biological macromolecules, vol. 1, no. 109, p. 651-663. https://doi.org/10.1016/j.ijbiomac.2017.12.092 DOI: https://doi.org/10.1016/j.ijbiomac.2017.12.092
Ke, Y., Huang, W., Li, J., Xie, M., Luo, X. 2012. Enzymatic characteristics of a recombinant neutral protease I (rNpI) from Aspergillus oryzae expressed in Pichia pastoris. Journal of Agricultural and Food Chemistry, vol. 60, p. 12164-12169. https://doi.org/10.1021/jf303167r DOI: https://doi.org/10.1021/jf303167r
Kotenkova, E., Polishchuk, E. 2019. Assessment of antimicrobial potential of substances isolated from some wastes of meat processing industry. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 308-313. https://doi.org/10.5219/1079 DOI: https://doi.org/10.5219/1079
Laemmli, U. K. 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, vol. 227, p. 680-685. https://doi.org/10.1038/227680a0 DOI: https://doi.org/10.1038/227680a0
Light, N., Champion, A. E. 1984. Characterization of muscle epimysium, perimysium and endomysium collagens. Biochem. J., vol. 219, no. 3, p. 1017-26. https://doi.org/10.1042/bj2191017 DOI: https://doi.org/10.1042/bj2191017
Macauley-Patrick, S., Fazenda, M. L., McNeil, B., Harvey, L. M. 2005. Heterologous protein production using the Pichia pastoris expression sys-tem. Yeast, vol. 22, p. 249-270. https://doi.org/10.1002/yea.1208 DOI: https://doi.org/10.1002/yea.1208
Miyoshi, S., Nitanda, Y., Fujii, K., Kawahara, K., Li, T., Maehara, Y., Ramamurthy, T., Takeda, Y., Shinoda, S. 2008. Differential gene expression and extracellular secretion of the collagenolytic enzymes by the pathogen Vibrio parahaemolyticus. FEMS microbiology letters, vol. 283, no. 2, p. 176-81. https://doi.org/10.1111/j.1574-6968.2008.01159.x DOI: https://doi.org/10.1111/j.1574-6968.2008.01159.x
Nezafat, N., Negahdaripour, M., Gholami, A., Younes, G. 2015. Computational analysis of collagenase from different Vibrio, Clostridium and Bacillus strains to find new enzyme sources. Trends in Pharma-ceutical Sciences, vol. 1, no. 4, p. 213-222. https://doi.org/10.1111/tips.v1i4.52
Qian, S., Chen, F., Geng, F., Luo, Y., Gong, S., Jiang, Z. 2017. A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chemistry, vol. 245, p. 570-577. https://doi.org/10.1016/j.foodchem.2017.10.113 DOI: https://doi.org/10.1016/j.foodchem.2017.10.113
Queiroz Brito Cunha, C. C., Gama, A. R., Cintra, L. C., Bataus, L. A. M., Ulhoa, C. J. 2018. Improvement of bread making quality by supplementation with a recombinant xylanase produced by Pichia pastoris. PLoS ONE, vol. 13, no. 2, p. e0192996. https://doi.org/10.1371/journal.pone.0192996 DOI: https://doi.org/10.1371/journal.pone.0192996
Rabert, C., Weinacker, D., Pessoa, A., Farías, J. G. 2013. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system. Brazilian Journal of Microbiology, vol. 44, no. 2, p. 351-356. https://doi.org/10.1590/S1517-83822013005000041 DOI: https://doi.org/10.1590/S1517-83822013005000041
Silva, V. C., Peres, M. F. S., Gattas, E. A. L. 2009. Application of methylotrophic yeast Pichia pastoris in the field of food industry - A review. Journal of Food, Agriculture and Environment,vol. 2, p. 268-273.
Tyagi, A., Kumar, A., Mohanty, A. K., Kaushik, J. K., Grover, S., Batish, V. K. 2017. Expression of buffalo chymosin in Pichia pastoris for application in mozarella cheese. LWT - Food Science and Technology, vol. 84, p. 733-739. https://doi.org/10.1016/j.lwt.2017.06.033 DOI: https://doi.org/10.1016/j.lwt.2017.06.033
Yegin, S., Fernandez-Lahore, M. 2013. A thermostable aspartic proteinase from Mucor mucedo DSM 809: gene identification, cloning, and functional expression in Pichia pastoris. Molecular Biotechnology, vol. 54, p. 661-672. https://doi.org/10.1007/s12033-012-9608-6 DOI: https://doi.org/10.1007/s12033-012-9608-6
Zhang, Y. Z., Ran, L. Y., Li, C. Y., Chen, X. L. 2015. Diversity, structures, and collagen-degrading mechanisms of bacterial collagenolytic proteases. Applied and Environmental Microbiology, vol. 81, no. 18, p. 6098-6107. https://doi.org/10.1128/AEM.00883-15 DOI: https://doi.org/10.1128/AEM.00883-15
Zhao, G. Y., Zhou, M. Y., Zhao, H. L., Chen, X. L., Xie, B. B., Zhang, X. Y., He, H. L., Zhou, B. C., Zhang, Y. Z. 2012. Tenderization effect of coldadapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism. Food Chemistry, vol. 134, no. 4, p. 1738-1744. https://doi.org/10.1016/j.foodchem.2012.03.118 DOI: https://doi.org/10.1016/j.foodchem.2012.03.118
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.