Determination of the carrot (Daucus carota L.) yields parameters by vermicompost and earthworms (Eisenia foetida)
DOI:
https://doi.org/10.5219/946Keywords:
carrot, antioxidant, vitamin C, total polyphenol, yieldAbstract
The impact of different types of vermicomposts as well as different species and genera of earthworms on the quantity of the cultivated crops yield has been studied for decades. There is scarce information about the effects of these factors on the quality of plant production. One of the qualitative parameters of vegetables, to which a special attention is paid, is the content of antioxidants (vitamin C, total polyphenols and other substances). The pot experiment carried out in the vegetation cage studied: A) the influence of soil itself, soil mixed with vermicompost in a ratio of 4:1; B) the influence of earthworms number (genus Eisenia foetida, 10 and 20 individuals per pot) supplied to soil mixed with vermicompost in a ratio of 4:1 on the weight of radish roots and leaves, to the total chlorophylls content in leaves, to the selected qualitative parameters of the roots and leaves (vitamin C, total polyphenols content, total antioxidant activity). The results showed that the supplementation of vermicompost into soil increased the content of the total chlorophylls in leaves. The carrot roots and leaves yield has also been risen. In the roots the content of vitamin C and content of total polyphenols (TPC) was decreased and the total antioxidant activity (TAA) dropped, too. The increased content of vitamin C and TPC was detected in leaves. The inoculation of soil containing vermicompost by earthworms increased the root yield and TAA in roots. It increased the content of vitamin C and TPC in leaves. From the viewpoint of antioxidant content (vitamin C and total polyphenols) the leaves are more attractive than a root.
Downloads
Metrics
References
Amador, J. A., Görres, J. H., Savin, M. C. 2006. Effects of Lumbricus terrestris L. on nitrogen dynamics beyond the burrow. Applied Soil Ekology, vol. 33, p. 61-66. https://doi.org/10.1016/j.apsoil.2005.09.008 DOI: https://doi.org/10.1016/j.apsoil.2005.09.008
Amossé, J., Bettarel, Y., Bouvier, C., Duc, T. T., Thu, T. D., Jouquet, P. 2013. The flows of nitrogen, bacteria and viruses from the soil to water compartments are influenced by earthworm activity and organic fertilization (compost vs. vermicompost). Soil Biology & Biochemistry, vol. 66, p. 197-203. https://doi.org/10.1016/j.soilbio.2013.07.007 DOI: https://doi.org/10.1016/j.soilbio.2013.07.007
Arancon, N. Q., Edwards, C. A., Atyieh, R., Metzger, J. D. 2004. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresource Technology, vol. 93, p. 139-144. https://doi.org/10.1016/j.biortech.2003.10.015 DOI: https://doi.org/10.1016/j.biortech.2003.10.015
Arnold, R. E., Hodson, M. E. 2007. Effect of time and mode of depuration on tissue copper concentrations of the earthworms Eisenia andrei, Lumbricus rubellus and Lumbricus terrestri. Environmental Pollution, vol.148, no. 1, p. 21-30. https://doi.org/10.1016/j.envpol. 2006.11.003 DOI: https://doi.org/10.1016/j.envpol.2006.11.003
Bhat, S. A., Singh, S., Sing, J., Kumar, S. Bhawana, Vig, A. P. 2018. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology, vol. 252, p. 172-179. https://doi.org/10.1016/j.biortech.2018.01.003 DOI: https://doi.org/10.1016/j.biortech.2018.01.003
Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft and Technologie, vol. 28, no. 1, p. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
Bremner, J. M. 1960. Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, vol. 55, no. 1, p. 11-33. https://doi.org/10.1017/S0021859600021572 DOI: https://doi.org/10.1017/S0021859600021572
Brown, G. G., Edwards, C. A., Brussaard, L. 2004. How Earthworms Affect Plant Growth: Burrowing into the Mechanisms. In Edwards, C.A. et al. Earthworm ecology. 2nd Edition. Ch. 2, CRC Press : London, UK p. 13-45, ISBN: 9780849318191 DOI: https://doi.org/10.1201/9781420039719.ch2
Dziadowiec, H., Gonet, S. S. 1999. A guide to the methods for determination of soil organic matter. Prace Komisie Naukowej. PTG : Warszawa, Poland, 65. p.
Doan, T. T., Ngo, P. T., Rumpel, C., Nguyen, B. V. 2013. Interactions between compost, vermicompost and earthworms influence plant growth and yield: A one-year greenhouse experiment. Scientia Horticulturae, vol. 160, p. 148-154. https://doi.org/10.1016/j.scienta.2013.05.042 DOI: https://doi.org/10.1016/j.scienta.2013.05.042
Elmer, W. H. 2016. Effect of leaf mold mulch, biochar, and earthworms on mycorrhozal colonization and yield of asparagus affected by Fusarium crown and root rot. Plant disease. vol. 100, p. 2507-2512. https://doi.org/10.1094/PDIS-10-15-1196-RE DOI: https://doi.org/10.1094/PDIS-10-15-1196-RE
Garg, P., Gupta, A., Satya, S. 2006. Vermicomposting of different types of waste using Eisenia foetida : A comparative study. Bioresource Technology. vol. 97, p. 391-395. https://doi.org/10.1016/j.biortech.2005.03.009 DOI: https://doi.org/10.1016/j.biortech.2005.03.009
Goswami, L., Nath, A., Sutradhar, S., Bhattacharya, S. S., Kalamdhad, A., Vellingiri, K., Kim, K-H. 2017. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. Journal of Environmental Management, vol. 200, p. 243-252. https://doi.org/10.1016/j.jenvman.2017.05.073 DOI: https://doi.org/10.1016/j.jenvman.2017.05.073
Friberg, H., Lagerlöf, J., Rämert, B. 2005. Influence of soil fauna on fungal plantpathogens in agricultural and horticultural systems. Biocontrol Science and Technology, vol. 15, no. 7, p. 641-658. https://doi.org/10.1080/09583150500086979 DOI: https://doi.org/10.1080/09583150500086979
Groenigen, J. W., Lubbers, I. M., Vos, H. M. J., Brown, G. G., De Deyn, G. B., Groenigen, K. J. 2014. Earthworms increase plant production: a meta-analysis. Scientific Reports, vol. 4, no. 6365, p. 1-7. https://doi.org/10.1038/srep06365 DOI: https://doi.org/10.1038/srep06365
Gutiérrez-Miceli F. A., García-Gómez R. C., Rincón R. R., Abud-Archila M., Llaven O. M. A., Cruz M. J. G., Dendooven L. 2008. Formulation of a liquid fertilizer for sorghum (Sorghum bicolor L. Moench) using vermicompost leachate. Bioresource Technology, vol. 99, p. 6174-6180. https://doi.org/10.1016/j.biortech.2007.12.043 DOI: https://doi.org/10.1016/j.biortech.2007.12.043
Gutiérrez-Miceli, F. A., Santiago-Borraz, J., Molina, J. A. M., Nafatae, C. C., Abud-Archila, M., Llaven, M. A. O., Rosales, R. R., Dendooven, L. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, vol. 98, no. 15, p. 2781-2786. https://doi.org/10.1016/j.biortech.2006.02.032 DOI: https://doi.org/10.1016/j.biortech.2006.02.032
Gunadi, B., Edwards, C. A. 2003. The effects of multiple applications of different organic wastes on the growth, fecundity and survival of Eisenia fetida (Savigny) (Lumbricidae). Pedobiologia, vol. 47, no. 4, 321-329. https://doi.org/10.1078/0031-4056-00196 DOI: https://doi.org/10.1078/0031-4056-00196
Hegedűsová, A., Mezeyová, I., Timoracká, M., Šlosár, M., Musilová, J., Juríková, T. 2015. Total polyphenol content and antioxidant capacity changes in dependence on chosen garden pea varieties. Potravinarstvo, vol. 9, no. 1, p. 1-8. https://doi.org/10.5219/412 DOI: https://doi.org/10.5219/412
Jouquet, P., Plumere, T., Thu, T. D., Rumpel, C., Duc, T. T., Orange, D. 2010. The rehabilitation of tropical soils using compost and vermicompost is affected by the presence of endogeic earth worms. Applied Soil Ecology, vol. 46, p. 125-133. https://doi.org/10.1016/j.apsoil.2010.07.002 DOI: https://doi.org/10.1016/j.apsoil.2010.07.002
Manh, V. H., Wang, C. H. 2014. Vermicompost as an important component in substrate: Effects on seedling quality and growth of muskmelon (Cucumis melo L.). APCBEE Procedia, vol. 8, p. 32-40. https://doi.org/10.1016/j.apcbee.2014.01.076 DOI: https://doi.org/10.1016/j.apcbee.2014.01.076
Khan, K., Pankaj, U., Verma, S. K., Gupta, A. K., Singh, R. P., Verma, R. K. 2015. Bio-inoculants and vermicompost influence on yield, quality of Andrographis paniculata, and soil properties. Industrial Crops and Products, vol. 70, p. 404-409. https://doi.org/10.1016/j.indcrop.2015.03.066 DOI: https://doi.org/10.1016/j.indcrop.2015.03.066
Kováčik. P. 2007. Brief history of agrochemistry and fertilization in Slovakia (Stručná história agrochémie a úroveň hnojenia na Slovensku). Prešov : Vydavateľstvo Michala Vaška, Slovakia, 76 p. ISBN: 978-80-7165-608-1 (In Slovak)
Kováčik, P., Renčo, M., Šimanský, V., Hanáčková, E., Wiśniowska-Kielian, B. 2015 Impact of vermicompost extract application into soil and on plant leaves on maize phytomass formation. Journal of Ecological Engineering, vol. 16, no. 4, p. 143-153. https://doi.org/10.12911/22998993/59363 DOI: https://doi.org/10.12911/22998993/59363
Kováčik, P., Šimanský, V., Wierzbowska, J., Renčo M. 2016. Impact of foliar application of biostimulator Mg-Titanit on formation of winter oilseed rape phytomass and its titanium content. Journal of Elementology, vol. 21, no. 4, p. 1235-1251. https://doi.org/10.5601/jelem.2016.21.2.1155 DOI: https://doi.org/10.5601/jelem.2016.21.2.1155
Kováčik, P., Šalamún, P., Wierzbowska, J. 2018. Vermikompost and Eisenia foetida as factors influencing the formation of radish phytomass. Agriculture (Poľnohospodárstvo), vol. 64, no. 2, p. 49-56. https://doi.org/10.2478/agri-2018-0005 DOI: https://doi.org/10.2478/agri-2018-0005
Lalander, C. H. Komakech, A. J., Vinnerĺs, B. 2015. Vermicomposting as manure management strategy for Urban small-holder animal farms - Kampala case study. Waste Management, vol. 39, p. 96-103. https://doi.org/10.1016/j.wasman.2015.02.009 DOI: https://doi.org/10.1016/j.wasman.2015.02.009
Lachman, J., Proněk, D., Hejtmanková, A., Dudjak, J., Pivec, V., Faitová, K. 2003. Total polyphenol and main flavonoid antioxidant in different onion (Allium cepa L.) varieties. Horticultural Science, vol. 30, no. 4, p. 142-147. https://doi.org/10.17221/3876-HORTSCI DOI: https://doi.org/10.17221/3876-HORTSCI
Lenková, M., Bystrická, J., Chlebo, P., Kovarovič, J. 2018. Garlic (Allium Sativum L.) - The content of bioactive compounds. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 405-412. https://doi.org/10.5219/830 DOI: https://doi.org/10.5219/830
Lichtenthaler, H. K. 1987. Chllorophylls and carotenoides: Pigments of photosynthetic biomembranes. Methods Enzymology, vol. 148, p. 350-382. https://doi.org/10.1016/0076-6879(87)48036-1 DOI: https://doi.org/10.1016/0076-6879(87)48036-1
Musilová, J., Bystrická, J., Árvay, J., Harangózo, Ľ. 2017. Polyphenols and phenolic acids in sweet potato (Ipomoea Batatas L.) roots. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 82-87. https://doi.org/10.5219/705 DOI: https://doi.org/10.5219/705
Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communication in Soil Science and Plant Analysis, vol. 15, no. 12, p. 1409-1416. https://doi.org/10.1080/00103628409367568 DOI: https://doi.org/10.1080/00103628409367568
Milcu, A., Schumacher, J., Scheu, S. 2006. Earthworms (Lumbricus terrestris) affect plant seedling recruitment and microhabitat heterogenity. Functional Ekology, vol. 20, p. 261-268. https://doi.org/10.1111/j.1365-2435.2006.01098.x DOI: https://doi.org/10.1111/j.1365-2435.2006.01098.x
Najjari, F., Ghasemi, S. 2018. Changes in chemical properties of sawdust and blood powder mixture during vermicomposting and the effects on the growth and chemical composition of cucumber. Scientia Horticulturae, vol. 232, p. 250-255. https://doi.org/10.1016/j.scienta.2018.01.018 DOI: https://doi.org/10.1016/j.scienta.2018.01.018
Nurhidayati, N., Ali, U., Murwani I. 2016. Yield and quality of cabbage (Brassica oleracea L. var. capitata) under organic growing media using vermicompost and earthworm Pontoscolex corethrurus inoculation. Agriculture and Agricultural Science Procedia, vol. 11, p. 5-13. https://doi.org/10.1016/j.aaspro.2016.12.002 DOI: https://doi.org/10.1016/j.aaspro.2016.12.002
Nuutinen, V., Pöyhönen, S., Ketoja, E., Pitkänen, J. 2001. Abundance of the earthworm Lumbricus terrestris in relation to subsurface drainage pattern on a sandy clay field. European Journal of Soil Biology. vol. 37, no. 4, p. 301-304. https://doi.org/10.1016/S1164-5563(01)01105-0 DOI: https://doi.org/10.1016/S1164-5563(01)01105-0
Oszmianski, J., Kolniak-Ostek, J., Wojdyło, A. 2013. Characterization and content of flavonol derivarives of Allium ursinum L. plant. Journal of Agricultural and Food Chemistry, vol. 61, no. 1, p. 176-184. https://doi.org/10.1021/jf304268e PMid:23249145 DOI: https://doi.org/10.1021/jf304268e
Padmavathiamma, P. K., Loretta, Y. Li., Kumari, U. R. 2008. An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresource Technology. vol. 99, p. 1672-1681. https://doi.org/10.1016/j.biortech.2007.04.028 DOI: https://doi.org/10.1016/j.biortech.2007.04.028
Rämert, B., Bugg, R. L., Clark, M. S., Werner, M. R., McGuinn, R. P., Poudel, D. D., Berry, A. M. 2002. Influence of Lumbricus terrestris inoculation on gree nmanure disappearance and the decomposer community in a walnut orchard. Soil Biology and Biochemistry, vol. 33, p. 1509-1516. https://doi.org/10.1016/S0038-0717(01)00066-9 DOI: https://doi.org/10.1016/S0038-0717(01)00066-9
Razaq, M., Zhang, P., Shen, H. L., Salahuddin. 2017 Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One, vol. 12, no. 2, e0171321. https://doi.org/10.1371/journal.pone.0171321 DOI: https://doi.org/10.1371/journal.pone.0171321
Ražná, K., Khasanova, N., Ivanišová, E., Qahramon, D., Habán, M. 2018. Antioxidant properties of cumin (Bunium Persicum boiss.) extract and its protective role against ultrasound-induced oxidative stress tested by microrna based markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, 2018, no. 1, p. 11-19. https://doi.org/10.5219/838 DOI: https://doi.org/10.5219/838
Santos, C., Fonseca, J., Aires, A., Coutinho, J., Trinidade, H. 2017. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Management, vol. 59, p. 37-47. https://doi.org/10.1016/j.wasman.2016.10.020 DOI: https://doi.org/10.1016/j.wasman.2016.10.020
Scheuerell S. J. 2004. Compost tea production practices, microbial properties, and plant disease suppression. In Soil and compost eco-biology, León-Spain, SoilAce : Spain, p. 41-51.
Spurgeon, D. J., Keith, A. M., Schmidt, O., Lammertsma, D. R., Faber, J. H. 2013. Landuse and land-management change: relationships with earthworm and fungi communities and soil structural properties. BMC Ecoogy. vol. 13, 46. https://doi.org/10.1186/1472-6785-13-46 DOI: https://doi.org/10.1186/1472-6785-13-46
Xiang, H., Zhang, J., Guo, L., Zhao, B. 2016. In situ earthworm breeding in orchards significantly improves the growth, quality and yield of papaya (Carica papaya L.). PeerJ, 4:e2752; https://doi.org/10.7717/peerj.2752 DOI: https://doi.org/10.7717/peerj.2752
Downloads
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.