Voltammetric determination of cholecalciferol at glassy carbon electrode performed in water ethanol mixture

Authors

  • Arlinda Nallbani University of Prishtina, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Str. Mother Teresa
  • Julie Holubová University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice
  • Milan Sýs University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice
  • Tahir Arbneshi University of Prishtina, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Str. Mother Teresa, Prishtina 10 000
  • Karel Vytřas University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice

DOI:

https://doi.org/10.5219/889

Keywords:

cholecalciferol, anodic differential pulse voltammetry, glassy carbon electrode, vitamin food supplements

Abstract

To confirm or disprove previous hypotheses, cyclic voltammetry of 0.5 mM cholecalciferol (vitamin D3) at glassy carbon electrode (GCE) and platinum disk electrode (PtE) in pure acetonitrile and water‑ethanol mixture at 50 mV·s‑1 has been used to investigate the oxidation mechanism. The oxidation occurs in two one-electrone steps. According to calculation of the highest electron density in cholecalciferol molecule which is evidently delocalized over carbon atoms of the three conjugated double bonds (C19, C10, C5-C8) points to part of the molecule involved in oxidation processes. An oxidation peak (at +0.925 V vs. Ag/AgCl) was used to develop direct voltammetric method based on differential pulse voltammetry for the vitamin D3 determination at GCE performed in 40% ethanol containing 0.1 M LiClO4. Under optimization of analytical procedure, it was found that a composition of the supporting electrolyte used significantly affects a current response of oxidation peak obtained. Satisfactory sensitivity was achieved in the 1:1 water‑ethanol mixture containing 0.05 M lithium perchlorate as as supporting electrolyte. The linear range for vitamin D3 determination was
2.4 × 10-6 - 3.5 × 10-4 M with the detection limit of 8.0 × 10-7 M. This work demonstrates a fact that the GCE is suitable electroanalytical device for analysis of various food supplements and medicaments.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bikle, D. D. 2014. Vitamin D metabolism, mechanism of action, and clinical applications. Chemical Biology, vol. 21, no. 3, p. 319-329. https://doi.org/10.1016/j.chembiol.2013.12.016 DOI: https://doi.org/10.1016/j.chembiol.2013.12.016

Canevari, T. C., Cincotto F. H., Landers, R., Machado, S. A. S. 2014. Synthesis and characterization of a‑nickel (II) hydroxide particles on organic‑inorganic matrix and its application in a sensitive electrochemical sensor for vitamin D determination. Electrochimica Acta, vol. 147, no. 1, p. 688-695. https://doi.org/10.1016/j.electacta.2014.10.012 DOI: https://doi.org/10.1016/j.electacta.2014.10.012

Chan, Y. Y., Yue, Y., Webster, R. D. 2014. Voltammetric studies on vitamins D2 and D3 in organic solvents. Electrochimica Acta, vol. 138, no. 20, p. 400-409. https://doi.org/10.1016/j.electacta.2014.06.133 DOI: https://doi.org/10.1016/j.electacta.2014.06.133

Christakos, S., Lieben, L., Masuyama, R., Carmeliet, G. 2014. Vitamin D endocrine system and the intestine. Bonekey Reports, vol. 3, no. 1, p. 496-453. https://https://doi.org/10.1038/bonekey.2013.230 DOI: https://doi.org/10.1038/bonekey.2013.230

Cincotto, F. H., Canevari, T. C., Machado, S. A. S. 2014. Highly sensitive electrochemical sensor for determination of vitamin D in mixtures of water‑ethanol. Electroanalysis, vol. 26, no. 12, p. 2783-2788. https://doi.org/https://doi.org/10.1002/elan.201400451 DOI: https://doi.org/10.1002/elan.201400451

Filik, H., Avan, A. A. 2017. Simultaneous electrochemical determination of vitamin K1 and vitamin D3 by using poly (Alizarin red S)/multi‑walled carbon nanotubes modified glassy electrode. Current Analytical Chemistry, vol. 13, no. 5, p. 350-360. https://doi.org/https://doi.org/10.2174/1573411013666170105143113 DOI: https://doi.org/10.2174/1573411013666170105143113

Hernández-Méndez, J., Sánchez-Pérez, A., Delgado-Zamarreño, M., Hernández-Garcia, M. L. 1988. Voltammetric determination of vitamin D3 with a rotating glassy carbon electrode. Journal of Pharmaceutical and Biomedical Analysis, vol. 6, no. 6-8, p. 737-741. https://doi.org/10.1016/0731-7085(88)80085-2 DOI: https://doi.org/10.1016/0731-7085(88)80085-2

Kutluğ, S., Kılıç, M., Bilgici, B., Paksu, Ş., Yıldıran, A., Sancak, R. 2017. An evaluation of vitamin D levels in children with seasonal allergic rhinitis during pollen season. Pediatric Allergy and Immunology, vol. 28, no. 5, p. 446-451. https://doi.org/10.1111/pai.12728 DOI: https://doi.org/10.1111/pai.12728

Lappe, J. M., Travers-Gustafson, D., Davies, K. M., Recker, R. R., Heaney, R. P. 2007. Vitamin D and calcium supplementation reduces cancer risk: Results of a randomized trial. The American Journal of Clinical Nutrition, vol. 85, no. 6, p. 1586-1591. PMid:17556697 DOI: https://doi.org/10.1093/ajcn/85.6.1586

Sabolová, M., Adámková, A., Kouřimská, L., Chrpová, D., Pánek, J. 2016. Minor lipophilic compounds in edible insects. Potravinarstvo, vol. 10, no. 1, p. 400-406. https://doi.org/10.5219/605 DOI: https://doi.org/10.5219/605

Sýs, M., Žabčíková, S., Červenka, L., Vytřas, K. 2016. Adsorptive stripping voltammetry in lipophilic vitamins determination. Potravinarstvo, vol. 10, no. 1, p. 260-264. https://https://doi.org/10.5219/587 DOI: https://doi.org/10.5219/587

Thacher, T. D., Obadofin, M. O., O'Brien, K. O., Abrams, S. A. 2009. The effect of vitamin D2 and vitamin D3 on intestinal calcium absorption in nigerian children with rickets. The Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 9, p. 3314-3321. https://doi.org/10.1210/jc.2009-0018 DOI: https://doi.org/10.1210/jc.2009-0018

Wacker, M., Holick, M. F. 2013. Sunlight and Vitamin D a global perspective for health. Dermato-Endocrinology, vol. 5, no. 1, p. 51-108. https://doi.org/10.4161/derm.24494 DOI: https://doi.org/10.4161/derm.24494

Wang, Ch. 2013. Role of vitamin D in cardiometabolic diseases. Journal of Diabetes Research, vol. 2013, no. 1, p. 1-10. https://doi.org/10.1155/2013/243934 DOI: https://doi.org/10.1155/2013/243934

Webster, R. D. 2012. Voltammetry of the liposoluble vitamins (A, D, E and K) in organic solvents. The Chemical Record, vol. 12, no. 1, p. 188-200. https://doi.org/10.1002/tcr.201100005 DOI: https://doi.org/10.1002/tcr.201100005

Zittermann,A., Borgermann, J., Gummert, J. F., Pilz, S. 2012. Future directions in vitamin D and cardiovascular research. Nutrition, Metabolism and Cardiovascular Diseases, vol. 22, no. 7, p. 541-546. https://10.1016/j.numecd.2012.02.004 DOI: https://doi.org/10.1016/j.numecd.2012.02.004

Downloads

Published

2018-02-28

How to Cite

Nallbani, A. ., Holubová, J. ., Sýs, M. ., Arbneshi, T. ., & Vytřas, K. . (2018). Voltammetric determination of cholecalciferol at glassy carbon electrode performed in water ethanol mixture. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 166–172. https://doi.org/10.5219/889