Thermal aging of edible oils: spectrophotometric study
DOI:
https://doi.org/10.5219/871Keywords:
fluorescence spectroscopy, UV/Vis, thermal aging, oils, qualityAbstract
The aim of the present study was to determine the spectrophotometric and thermal aging properties of various edible oils (olive, peanut, rapeseed, soybean and sunflower oils) which are commonly available in the Czech market. The samples were measured by UV/VIS absorption spectrometry and fluorescence spectroscopy. Detected substances of UV/VIS spectra were compared to expected oil composition; the highest absorbance values were detected in a wavelength range 300-550 nm which can be related to the presence of unsaturated fatty acids. The mixtures of oils were characterized by fluorescence spectroscopy; the individual oils were successfully distinguished according to their excitation-emission profiles. This method was also used to detect the samples of adulterated oils, i.e., the adulteration of high-quality oils with soybean oil. From a physicochemical point of view, the influence of temperature on the compounds of extra virgin olive oil was examined by thermal stress simulation. This thermal aging analysis demonstrated that the amount of oxidation products in olive oil increased during the heating whereas the chlorophyll content decreased. The results showed the ability of the techniques used, UV/VIS absorption spectrometry and fluorescence spectroscopy, to characterize the quality and composition of oils, and to distinguish individual oils in blends. UV/VIS spectrometry was also successfully employed for the evaluation of olive oil qualitative parameters according to the standard quality parameters by the "International Olive Council" (EEC 702/2007).
Downloads
Metrics
References
Arora, S., Bagoria, R., Kumar, M. 2010. Effect of alpha-tocopherol (vitamin E) on the thermal degradation behavior of edible oils. Multiple-heating rate kinetics. Journal of Thermal Analysis and Calorimetry, vol. 102, no. 1, p. 375-381. https://doi.org/10.1007/s10973-009-0460-2 DOI: https://doi.org/10.1007/s10973-009-0460-2
Bastos, L. C. S., de Almeida Costa, E. A., Pereira, P. A. P. 2017. Development, validation and application of an UFLC-DAD-ESI-MS method for determination of carbonyl compounds in soybean oil during continuous heating. Food Chemistry, vol. 218, p. 518-524. https://doi.org/10.1016/j.foodchem.2016.09.036 DOI: https://doi.org/10.1016/j.foodchem.2016.09.036
Behlau, L., Widmann, G. 2003. Food. Collected Applications: Thermal Analysis. Application Handbook: Mettler-Toledo GmbH [online] s.a. [cit. 2017-12-05] Available at: https://www.mt.com/int/en/home/applications/Application_Browse_Laboratory_Analytics/Application_Browse_thermal_analysis/TA_Appl_Handb.html.
Burg, P., Mašán, V., Rutkowski, K. 2017. Evaluation of the pressing process during oil extraction from grape seeds. Potravinarstvo Slovak Journal of Food Science, vol. 11, no. 1, p. 1-6. DOI: https://doi.org/10.5219/690
Chen, M., Zhao, Z., Lan, X., Chen, Y., Zhang, L., Ji, R., Wang, L. 2015. Determination of carbendazim and metiram pesticides residues in rapeseed and peanut oils by fluorescence spectrophotometry. Measurement, vol. 73, p. 313-317. https://doi.org/10.1016/j.measurement.2015.05.006 DOI: https://doi.org/10.1016/j.measurement.2015.05.006
Choe, E., Min, D. B. 2007. Chemistry of Deep-Fat Frying Oils. Journal of Food Science, vol. 72, no. 5, p. 1-10. https://doi.org/10.1111/j.1750-3841.2007.00352.x PMid:17995742 DOI: https://doi.org/10.1111/j.1750-3841.2007.00352.x
Commission Regulation (EC) No 1989/2003 of 6 November 2003 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis. Official Journal of the European Union L, vol. 295, 6.11.2003, p. 57-66.
Commission Regulation (EC) No 702/2007 of 21 June 2007 amending Commission Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Official Journal of the European Union L, vol. 161, 22.6.2007, p. 11-27.
Comunian, T. A., Ravanfar, R., de Castro, I. A., Dando, R., Favaro-Trindade, C. S., Abbaspourrad, A. 2017. Improving oxidative stability of echium oil emulsions fabricated by Microfluidics: Effect of ionic gelation and phenolic compounds. Food Chemistry, vol. 233, p. 125-134. ISBN 0308-8146. DOI: https://doi.org/10.1016/j.foodchem.2017.04.085
De Caro, C. A., Schubnell, M. 2015. Quality control of olive oil by UV/VIS spectroscopy and DSC [online] s.a. [cit. 2017-12-05] Available at: https://www.mt.com/int/en/home/products/Laboratory_Analytics_Browse/uv-vis-spectrometers/cuvette-uv-vis-spectrometers.html.
Gharby, S., Harhar, H., Matthäus, B., Bouzoubaa, Z., Charrouf, Z. 2016. The chemical parameters and oxidative resistance to heat treatment of refined and extra virgin Moroccan Picholine olive oil. Journal of Taibah University for Science, vol. 10, no. 1, p. 100-106. https://doi.org/10.1016/j.jtusci.2015.05.004 DOI: https://doi.org/10.1016/j.jtusci.2015.05.004
Gonçalves, R. P., Março, P. H., Valderrama, P. 2014. Thermal edible oil evaluation by UV-Vis spectroscopy and chemometrics. Food Chemistry, vol. 163, p. 83-86. https://doi.org/10.1016/j.foodchem.2014.04.109 PMid:24912699 DOI: https://doi.org/10.1016/j.foodchem.2014.04.109
Gunstone, F. D. 2013. Composition and Properties of Edible Oils. In Hamm, W. et al. Edible Oil Processing. Indianapolis, USA : John Wiley & Sons, Ltd., p. 1-39. ISBN 978-1-4443-3684-9. DOI: https://doi.org/10.1002/9781118535202.ch1
Gutiérrez, F., Fernández, J. L. 2002. Determinant Parameters and Components in the Storage of Virgin Olive Oil. Prediction of Storage Time Beyond Which the Oil is No Longer of "Extra" Quality. Journal of Agricultural and Food Chemistry, vol. 50, no. 3, p. 571-577. https://doi.org/10.1021/jf0102158 PMid:11804531 DOI: https://doi.org/10.1021/jf0102158
Guzmán, E., Baeten, V., Pierna, J. A. F., García-Mesa, J. A. 2015. Evaluation of the overall quality of olive oil using fluorescence spectroscopy. Food Chemistry, vol. 173, p. 927-934. https://doi.org/10.1016/j.foodchem.2014.10.041 DOI: https://doi.org/10.1016/j.foodchem.2014.10.041
PMid:25466108
Hammer, A. 2008. The characterization of olive oils by DSC [online] s.a. [cit. 2017-12-05] Available at: https://www.mt.com/id/en/home/supportive_content/matchar_apps/MatChar_UC282.html.
Hernández Sánchez, M. D. R., Cuvelier, M., Turchiuli, C. 2016. Effect of α-tocopherol on oxidative stability of oil during spray drying and storage of dried emulsions. Food Research International, vol. 88, no. Part A, p. 32-41. DOI: https://doi.org/10.1016/j.foodres.2016.04.035
Li, B., Wang, H., Zhao, Q., Ouyang, J., Wu, Y. 2015. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study. Food Chemistry, vol. 181, p. 25-30. https://doi.org/10.1016/j.foodchem.2015.02.079 PMid:25794716 DOI: https://doi.org/10.1016/j.foodchem.2015.02.079
Morelló, J., Motilva, M., Tovar, M., Romero, M. 2004. Changes in commercial virgin olive oil (cv Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chemistry, vol. 85, no. 3, p. 357-364. https://doi.org/10.1016/j.foodchem.2003.07.012 DOI: https://doi.org/10.1016/j.foodchem.2003.07.012
Munasinghe, M., Wanspala, J. 2015. Β-Carotene content of M. Longifolia seed oil in different agro-climatic zones in Sri Lanka, the effect of heat on its stability and the composition of seed cake. Potravinárstvo, vol. 9, no. 1, p. 474-479. https://doi.org/10.5219/502 DOI: https://doi.org/10.5219/502
Osório, V. M. de Lourdes Cardeal, Z. 2011. Determination of acrolein in french fries by solid-phase microextraction gas chromatography and mass spectrometry. Journal of Chromatography A, vol. 1218, no. 21, p. 3332-3336. https://doi.org/10.1016/j.chroma.2010.11.068 PMid:21168848 DOI: https://doi.org/10.1016/j.chroma.2010.11.068
Pamies, D. Vilanova, E. 2014. Acrolein. Encyclopedia of Toxicology (Third Edition), vol. 2014, p. 63-68. DOI: https://doi.org/10.1016/B978-0-12-386454-3.00466-8
Sebastian, A., Ghazani, S. M., Marangoni, A. G. 2014. Quality and safety of frying oils used in restaurants. Food Research International, vol. 64, p. 420-423. https://doi.org/10.1016/j.foodres.2014.07.033 DOI: https://doi.org/10.1016/j.foodres.2014.07.033
Sikorska, E., Górecki, T., Khmelinskii, I. V., Sikorski, M., Kozioł, J. 2005. Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chemistry, vol. 89, no. 2, p. 217-225. https://doi.org/10.1016/j.foodchem.2004.02.028 DOI: https://doi.org/10.1016/j.foodchem.2004.02.028
Suh, J. H., Ho, C., Wang, Y. 2017. Evaluation of carbonyl species in fish oil: An improved LC-MS/MS method. Food Control, vol. 78, p. 463-468. https://doi.org/10.1016/j.foodcont.2017.03.014 DOI: https://doi.org/10.1016/j.foodcont.2017.03.014
Thanh, T., Vergnes, M., Kaloustian, J., El-Moselhy, T. F., Amiot-Carlin, M., Portugal, H. 2006. Effect of Storage and Heating on Phytosterol Concentrations in Vegetable Oils Determined by GC/MS. Journal of the Science of Food and Agriculture, vol. 86, no. 2, p. 220-225. https://doi.org/10.1002/jsfa.2322 DOI: https://doi.org/10.1002/jsfa.2322
Timilsena, Y. P., Vongsvivut, J., Adhikari, R., Adhikari, B. 2017. Physicochemical and thermal characteristics of Australian chia seed oil. Food Chemistry, vol. 228, p. 394-402. https://doi.org/10.1016/j.foodchem.2017.02.021 PMid:28317740 DOI: https://doi.org/10.1016/j.foodchem.2017.02.021
Widlak, N., Hartel, W. R., Narine, S. 2001. Crystallization and solidification properties of lipids. Champaign, Illinois : AOCS Press. 246 p. ISBN 18-939-9721-9.
Xu, J., Liu, X., Wang, Y. 2016. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique. Food Chemistry, vol. 212, p. 72-77. https://doi.org/10.1016/j.foodchem.2016.05.158 PMid:27374508 DOI: https://doi.org/10.1016/j.foodchem.2016.05.158
Zhang, Y., Zhang, F., Thakur, K., Ci, A., Wang, H., Zhang, J., Wei, Z. 2017. Effect of natural polyphenol on the oxidative stability of pecan oil. Food and Chemical Toxicology, vol. S0278-6915, no. 17, p. 30579-30583.
Zou, Y., Gao, Y., He, H., Yang, T. 2018. Effect of roasting on physico-chemical properties, antioxidant capacity, and oxidative stability of wheat germ oil. LWT, vol. 90, p. 246-253. https://doi.org/10.1016/j.lwt.2017.12.038 DOI: https://doi.org/10.1016/j.lwt.2017.12.038
Zuta, P. C., Simpson, B. K., Zhao, X., Leclerc, L. 2007. The effect of α-tocopherol on the oxidation of mackerel oil. Food Chemistry, vol. 100, no. 2, p. 800-807. https://doi.org/10.1016/j.foodchem.2005.11.003 DOI: https://doi.org/10.1016/j.foodchem.2005.11.003
Downloads
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.