Assesment of the antioxidant activity and content of polyphenolic compounds in grapevine seeds
DOI:
https://doi.org/10.5219/712Keywords:
antioxidant activity, flavonols, grapevine seeds, total polyphenolic compoundsAbstract
Our work was focused on the study of the antioxidant properties of grapevine seeds. We monitored the grapevine seeds of 6 cultivars of Vitis vinifera, L. (Nativa, Kofranka, Blaufränkish, Marlen, Cabernet Moravia and Italian Riesling). Antioxidant activity was determined by three principally different methods (DPPH, ABTS and FRAP), the content of the total polyphenolic compounds was determined by the Folin ciocalteu method, and the content of the total flavanols was determined by DMACA reagent (p-dimethylaminocinnamaldehyde). Results are presented as an equivalent of gallic acid in g.L-1, respectively were expressed as g.L-1 of catechin equivalents (DMACA method). The highest values of antioxidant activity were measured in the cultivar Nativa (DPPH - 7.75 g.L-1, ABTS - 4.888 g.L-1, FRAP - 4.25 g.L-1). Conversely, the lowest values of antioxidant activity were detected in the cultivar Kofranka (DPPH - 7.08 g.L-1, ABTS - 4.17 g.L-1, FRAP - 4.55 g.L-1). Cultivar Nativa also reached the highest content of flavonols (3.77 g.L-1). The highest measured values of the content of total polyphenolic compounds were identified in the cultivar Cabernet Moravia (15.2 g.L-1 of GAE). Conversely, the lowest values of the content of total polyphenolic compounds were detected in the cultivar Nativa (8.04 g.L-1). Pearson correlation coefficients were calculated for the existing values between antioxidant activity (DPPH, ABTS, FRAP), contents of flavonols, and contents of total polyphenols. The highest correlation coefficient was found between the DPPH and ABTS methods; specifically, it was 0.857.
Downloads
Metrics
References
Bajčan, D., Vollmannová, A., Šimanský, V., Bystrická, J., Trebichalský, P., Árvay, J., Czako, P. 2016. Antioxidant activity, phenolic content and colour of the slovak cabernet sauvignon wines. Potravinarstvo, vol. 10, no. 1, p. 89-84. https://doi.org/10.5219/534 DOI: https://doi.org/10.5219/534
Besharati, M., Taghizadeh, A. 2009. Evaluation of dried grape by-product as a tanniniferous tropical feedstuff. Animal Feed Science and Technology, vol. 152, no. 3-4, p. 198-203. https://doi.org/10.1016/j.anifeedsci.2009.04.011 DOI: https://doi.org/10.1016/j.anifeedsci.2009.04.011
Da Porto, C. 2012. Grappa: Production, sensory properties and market development. Alcoholic Beverages: Sensory Evaluation and Consumer Research, p. 299-314. DOI: https://doi.org/10.1533/9780857095176.3.299
Domínguez, J., Martínez-Cordeiro, H., Álvarez-Casas, M., Lores, M. 2014. Vermicomposting grape marc yields high quality organic biofertiliser and bioactive polyphenols. Waste Management & Research, vol. 32, no. 12, p. 1235-1240. https://doi.org/10.1177/0734242X14555805 PMid:25349068 DOI: https://doi.org/10.1177/0734242X14555805
Donnini, S., Tessarin, P., Ribera-Fonseca, A., Di Foggia, M., Parpinello, G. P., Rombolà, A. D. 2016. Glyphosate impacts on polyphenolic composition in grapevine (Vitis vinifera L.) berries and wine. Food Chemistry, vol. 213, p. 26-30. https://doi.org/10.1016/j.foodchem.2016.06.040 PMid:27451151 DOI: https://doi.org/10.1016/j.foodchem.2016.06.040
Ferreira, V., Fernandes, F., Pinto-Carnide, O., Valentão, P., Falco, V., Martín, J. P., Ortiz, J. M., Arroyo-García, R., Andrade, P. B., Castro, I. 2016. Identification of vitis vinifera l. Grape berry skin color mutants and polyphenolic profile. Food Chemistry, vol. 194, p. 117-127. https://doi.org/10.1016/j.foodchem.2015.07.142 PMid:26471534 DOI: https://doi.org/10.1016/j.foodchem.2015.07.142
Huang, D. J., Ou, B. X., Prior, R. L. 2005. The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, vol. 53, no. 6, p. 1841-1856. https://doi.org/10.1021/jf030723c PMid:15769103 DOI: https://doi.org/10.1021/jf030723c
Jakubcová, Z., Horky, P., Dostalová, L., Sochor, J., Tomášková, L., Baroň, M., Kalhotka, L., Zeman, L. 2015. Study of antioxidant and antimicrobial properties of grapevine seeds, grape and rosehip pressing. Potravinarstvo, vol. 9, no. 1, p. 382-387. https://doi.org/10.5219/503 DOI: https://doi.org/10.5219/503
Li, H., Wang, X. Y., Li, Y., Li, P. H., Wang, H. 2009. Polyphenolic compounds and antioxidant properties of selected china wines. Food Chemistry, vol. 112, no. 2, p. 454-460. https://doi.org/10.1016/j.foodchem.2008.05.111 DOI: https://doi.org/10.1016/j.foodchem.2008.05.111
Li, Y. G., Tanner, G., Larkin, P. 1996. The dmaca-hcl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. Journal of the Science of Food and Agriculture, vol. 70, no. 1, p. 89-101. https://doi.org/10.1002/(SICI)1097-0010(199601)70:1<89::AID-JSFA470>3.0.CO;2-N DOI: https://doi.org/10.1002/(SICI)1097-0010(199601)70:1<89::AID-JSFA470>3.0.CO;2-N
Liang, Y., Wang, J., Gao, H. Q., Wang, Q. Z., Zhang, J., Qiu, J. 2016. Beneficial effects of grape seed proanthocyanidin extract on arterial remodeling in spontaneously hypertensive rats via protecting against oxidative stress. Molecular Medicine Reports, vol. 14, no. 4, p. 3711-3718. https://doi.org/10.3892/mmr.2016.5699 DOI: https://doi.org/10.3892/mmr.2016.5699
McMurrough, I., Madigan, D., Smyth, M. R. 1996. Semipreparative chromatographic procedure for the isolation of dimeric and trimeric proanthocyanidins from barley. Journal of Agricultural and Food Chemistry, vol. 44, no. 7, p. 1731-1735. https://doi.org/10.1021/jf960139m DOI: https://doi.org/10.1021/jf960139m
Paixão, N., Perestrelo, R., Marques, J. C., Câmara, J. S. 2007. Relationship between antioxidant capacity and total phenolic content of red, rose and white wines. Food Chemistry, vol. 105, no. 1, p. 204-214. https://doi.org/10.1016/j.foodchem.2007.04.017 DOI: https://doi.org/10.1016/j.foodchem.2007.04.017
Pohanka, M., Sochor, J., Ruttkay-Nedecký, B., Cernei, N., Adam, V., Hubálek, J., Stiborová, M., Eckschlager, T., Kizek, R. 2012. Automated assay of the potency of natural antioxidants using pipetting robot and spectrophotometry. Journal of Applied Biomedicine, vol. 10, no. 3, p. 155-167. https://doi.org/10.2478/v10136-012-0006-y DOI: https://doi.org/10.2478/v10136-012-0006-y
Rockenbach, I. I., Gonzaga, L. V., Rizelio, V. M., Gonçalves, A., Genovese, M. I., Fett, R. 2011. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (vitis vinifera and vitis labrusca) pomace from brazilian winemaking. Food Research International, vol. 44, no. 4, p. 897-901. https://doi.org/10.1016/j.foodres.2011.01.049 DOI: https://doi.org/10.1016/j.foodres.2011.01.049
Rop, O., Jurikova, T., Sochor, J., Mlcek, J., Kramarova, D. 2011. Antioxidant capacity, scavenging radical activity and selected chemical composition of native apple cultivars from central europe. Journal of Food Quality, vol. 34, no. 3, p. 187-194. https://doi.org/10.1111/j.1745-4557.2011.00387.x DOI: https://doi.org/10.1111/j.1745-4557.2011.00387.x
Rop, O., Mlcek, J., Jurikova, T., Valsikova, M., Sochor, J., Reznicek, V., Kramarova, D. 2010. Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (aronia melanocarpa (michx.) elliot) cultivars. Journal of Medicinal Plants Research, vol. 4, no. 22, p. 2431-2437.
Shinagawa, F. B., De Santana, F. C., Mancini, J. 2015. Effect of cold pressed grape seed oil on rats' biochemical markers and inflammatory profile. Revista De Nutricao-Brazilian Journal of Nutrition, vol. 28, no. 1, p. 65-76. https://doi.org/10.1590/1415-52732015000100006 DOI: https://doi.org/10.1590/1415-52732015000100006
Singleton, V. L., Orthofer, R., Lamuela-Raventós, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, vol 299, p. 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1 DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
Sochor, J., Ryvolova, M., Krystofova, O., Salas, P., Hubalek, J., Adam, V., Trnkova, L., Havel, L., Beklova, M., Zehnalek, J., Provaznik, I., Kizek, R. 2010a. Fully automated spectrometric protocols for determination of antioxidant activity: Advantages and disadvantages. Molecules, vol. 15, no. 12, p. 8618-8640. https://doi.org/10.3390/molecules15128618 PMid:21116230 DOI: https://doi.org/10.3390/molecules15128618
Sochor, J., Salas, P., Zehnálek, J., Krska, B., Adam, V., Havel, L., Kizek, R. 2010b. An assay for spectrometric determination of antioxidant activity of a biological extract. Listy Cukrovarnicke a Reparske, vol. 126, p. 416-417.
Sochor, J., Skutkova, H., Babula, P., Zitka, O., Cernei, N., Rop, O., Krska, B., Adam, V., Provaznik, I., Kizek, R. 2011. Mathematical evaluation of the amino acid and polyphenol content and antioxidant activities of fruits from different apricot cultivars. Molecules, vol. 16, no. 9, p. 7428-7457. https://doi.org/10.3390/molecules16097428 PMid:21886093 DOI: https://doi.org/10.3390/molecules16097428
Sochor, J., Zitka, O., Skutkova, H., Pavlik, D., Babula, P., Krska, B., Horna, A., Adam, V., Provaznik, I., Kizek, R. 2010c. Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules, vol. 15, no. 9, p. 6285-6305. https://doi.org/10.3390/molecules15096285 PMid:20877223 DOI: https://doi.org/10.3390/molecules15096285
Songsermsakul, P., Pornphairin, E., Porasuphatana, S. 2013. Comparison of antioxidant activity of grape seed extract and fruits containing high beta-carotene, vitamin C, and E. International Journal of Food Properties, vol. 16, no. 3, p. 643-648. https://doi.org/10.1080/10942912.2011.561462 DOI: https://doi.org/10.1080/10942912.2011.561462
Soto, M. U. R., Brown, K., Ross, C. F. 2012. Antioxidant activity and consumer acceptance of grape seed flour-containing food products. International Journal of Food Science and Technology, vol. 47, no. 3, p. 592-602. https://doi.org/10.1111/j.1365-2621.2011.02882.x DOI: https://doi.org/10.1111/j.1365-2621.2011.02882.x
Valente, M., Brillard, A., Schönnenbeck, C., Brilhac, J. F. 2015. Investigation of grape marc combustion using thermogravimetric analysis. Kinetic modeling using an extended independent parallel reaction (eipr). Fuel Processing Technology, vol. 131, p. 297-303. https://doi.org/10.1016/j.fuproc.2014.10.034 DOI: https://doi.org/10.1016/j.fuproc.2014.10.034
Vivas, N. G. Y., Lagune, L., Saucier, C., Augustin, M. 1994. Estimation du degree de polymerization des procyanidins du raisin et du vin par la méthode au p-dimethylaminocinnamaldéhyde. Journal International des Sciences de la Vigne et du Vin, vol. 28, p. 319-336. DOI: https://doi.org/10.20870/oeno-one.1994.28.4.1138
Vršič, S., Ivančič, A., Šušek, A., Zagradišnik, B., Valdhuber, J., Šiško, M. 2011. The world's oldest living grapevine specimen and its genetic relationships. Vitis, vol. 50, no. 4, p. 167-171.
Downloads
Published
How to Cite
Issue
Section
License
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.