Evaluation of total polyphenol content and antioxidant capacity of different verity lupin seeds

Authors

  • Ismael Sulaiman Dalaram Department of Food Technology, College of Agriculture, Salahaddin University in Erbil, Iraq Republic

DOI:

https://doi.org/10.5219/678

Keywords:

total polyphenols, antioxidant capacity, variety lupine seeds

Abstract

Legumes, including lupins, beans, lentil and chickpea, are one of the most important crops in the world because of their nutritional quality. Lupin seeds have been used as human food and animal feed since ancient times. It was known that antioxidant photochemical in foods have many health benefits including prevention of various diseases associated with oxidative stress such as cancer, cardiovascular disease, neuro-degeneration and diabetes. Lupin grains are rich sources of complex carbohydrates, protein, vitamins and minerals. Antioxidants can be found naturally in foods. Total polyphenols content and antioxidant activity were measured in four varieties of lupin, namely in white lupin, blue lupin, yellow lupin and Mutabilis lupin species. A majority of antioxidants naturally present in foods occur in phenolic structures and especially in flavonoid structures. The content of the total polyphenols was determined by using the Folin-Ciocalteu reagent (FCR). Antioxidant activity was measured by using a compound DPPH˙ (2.2-diphenyl-1-picrylhydrazyl). In the present experiment according to the average contents of total polyphenols (TPC) in dry matter of lupin seeds there was the following line: L. Angustifolius (blue) lupin (696.212 mg GAE.100g-1) > L. Albus (white) lupin (614.13 mg GAE.100g-1) > L. Luteus (yellow) lupin (467.78 mg GAE.100g-1) > L. Mutabilis (pearl) lupin (367.36 mg GAE.100g-1). Based on the measured values of total antioxidant capacity (TAC) of lupin samples can be classified as follows: L. Albus (white) lupin (43.44%) >L. Angustifolius (blue) lupin (38.27%) >L. Luteus (yellow) lupin (22.29%) >L. Mutabilis (Pearl) lupin (20.80%). The relationship of antioxidant capacity with total polyphenolic was discussed. According to used statistical analyzes. Correlation between the phenolic contents and antioxidant capacity was significantly positive (r = 0.88). Our results confirmed that legumes can be a good source of bioactive compounds in the human nutrition. The main objective of the present work was to evaluated the content of total polyphenols and an antioxidant capacity of four Lupine species.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdelrahman R. A. 2014. Influence of Chemical Properties of Wheat-Lupine Flour Blends on Cake Quality. American Journal of Food Science and Technology, vol. 2, no. 2, p. 67-75. https://doi.org/10.12691/ajfst-2-2-4 DOI: https://doi.org/10.12691/ajfst-2-2-4

Afshin, A., Micha, R., Khatibzadeh, S., Mozaffarian, D. 2014. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. The American Journal of Clinical Nutrition, vol. 100, no. 1, p. 278-288. https://doi.org/10.3945/ajcn.113.076901 PMid:24898241 DOI: https://doi.org/10.3945/ajcn.113.076901

Akond, G. M. A. S. M., Khandaker, L., Berthold, J., Gates, L., Peters, K., Delong, H., Hossain, K. 2011. Anthocyanin, total polyphenols and antioxidant activity of common bean. American Journal of Food Technology, vol. 6, no. 5, p. 385-394. https://doi.org/10.3923/ajft.2011.385.394 DOI: https://doi.org/10.3923/ajft.2011.385.394

Amarowicz, R., Troszynska, A., Barylko-Pikielna, N., Shahidi, F. 2004. Polyphenolics extracts from legume seeds: correlations between total antioxidant activity, total phenolics content, tannins content and astringency. Journal of Food Lipids, vol. 11, no. 4, p. 278-286. https://doi.org/10.1111/j.1745-4522.2004.01143.x

Amarowicz, R., Troszyńska, A., Baryłko-Pikielna, N., Shahidi, F. 2005. Polyphenolics extracts from legume seeds: Correlations between total antioxidant activity, total phenolics content, tannins content and astringency. Journal of Food Lipids, vol. 11, no. 4, p. 278-286. https://doi.org/10.1111/j.1745-4522.2004.01143.x DOI: https://doi.org/10.1111/j.1745-4522.2004.01143.x

American Diabetes Association. 2008. Nutrition recommendations and interventions for diabetes. Diabetes Care, vol. 31, no. suppl. 1, p. S61-S78. DOI: https://doi.org/10.2337/dc08-S061

Aniess, W. I. M., Khalil, A. F., Mosa, Z. M. 2015. Phenolic compounds and antioxidants capacity of sweet lupine derivatives-wheat Flour mixtures and the effects on diabetic rats. IOSR Journal of Environmental Science, Toxicology and Food Technology, vol. 9, no. 5, p. 61-69.

Annicchiarico, P. 2008. Adaptation of cool-season grain legume species across climatically contrasting environments of southern Europe. Agronomy Journal, vol. 100, p. 1647-1654. https://doi.org/10.2134/agronj2008.0085 DOI: https://doi.org/10.2134/agronj2008.0085

Annicchiarico, P., Manunza, P., Arnoldi, A., Boschin, G. 2014. Quality of Lupinus Albus L. (white lupin) seed: extent of genotypic and environmental effects. Journal of Agricultural and Food Chemistry, vol. 62, no. 28, p. 6539-6545. https://doi.org/10.1021/jf405615k PMid:24934884 DOI: https://doi.org/10.1021/jf405615k

Archer, B. J., Johnson, S. K., Devereux, H. M., Baxter, A. L. 2004. Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, postmeal perceptions of satiety and food intake in men. British Journal Nutrition, vol. 91, no. 4, p. 591 599. https://doi.org/10.1079/BJN20031088 PMid:15035686 DOI: https://doi.org/10.1079/BJN20031088

Asian Productivity Organization, 2003. Processing and Utilization of Legumes [online] s.a. [cit. 2016-10-25] Available at: http://www.apo-tokyo.org/00e-books/AG-12_Legumes/AG-12_Legumes.pdf.

Australia New Zealand Food Authority, 2001. Lupin alkaloids in food. A toxicological review and risk assessment. Technical Report Series, no. 3, p 1-21.

Azo, W. M., Lane, G. P. P., Davis, W. P., Cannon, N. D. 2012. Bi-cropping white lupins (Lupinus Albus L.) with cereals for wholecrop forage in organic farming: The effect of seed rate and harvest dates on crop yield and quality. Biological Agriculture and Horticulture, vol. 28, no. 2, p. 86-100. https://doi.org/10.1080/01448765.2012.671722 DOI: https://doi.org/10.1080/01448765.2012.671722

Bazzano, L. A., He, J., Ogden, L. G., Loria, C., Vupputuri, S., Myers, L., Whelton, P. K. 2001. Legume consumption and risk of coronary heart disease in US men and women. NHANES I epidemiologic follow-up study. Archives of Internal Medicine, vol. 161, no. 21, p. 2573-2578. https://doi.org/10.1001/archinte.161.21.2573 PMid:11718588 DOI: https://doi.org/10.1001/archinte.161.21.2573

Bazzano, L. A., Thompson, A. M., Tees, M. T., Nguyen, C. H., Winham, D. M. 2011. Non-soy legume consuption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Disease, vol. 21, no. 2, p. 94-103. https://doi.org/10.1016/j.numecd.2009.08.012 PMid:19939654 DOI: https://doi.org/10.1016/j.numecd.2009.08.012

Bhardwaj, H. L., Hamama, A. A. 2012. Cultivar and growing location effects on white lupin immature green seeds. Journal of Agricultural Science, vol. 4, no.2, p. 135-138. https://doi.org/10.5539/jas.v4n2p135 DOI: https://doi.org/10.5539/jas.v4n2p135

Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of free radical method to evaluate antioxidant activity. Food Science and Technology, vol. 28, no. 1, p. 25-30. https://doi.org/10.1016/s0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Campos-Vega, R., Loarca-Piňa, G., Oomah, B. D. 2010. Minor components of pulses and their potential impact on human health. Food Research International, vol. 43, no. 2, p. 461-482. https://doi.org/10.1016/j.foodres.2009.09.004 DOI: https://doi.org/10.1016/j.foodres.2009.09.004

Clements, J., Prilyuk, L., Quealy, J., Francis, G. 2008. Interspecific a crossing among the new world lupin species for lupinus Mutabilis crop improvement. In Lupinus for Health and Wealth, Fremantle : Westwrn Australia, Proceedings of the 12th International Lupin Conference, pp. 324-327.

Dalaram, I. S. 2015. Total polyphenol content and antioxidant capacity of cowpea effect of variety and locality, Potravinarstvo, vol. 9, no. 1, p. 358-364. https://dx.doi.org/10.5219/508 DOI: https://doi.org/10.5219/508

Dalaram, S. I., Vollmannova, A., Timoracka, M. 2013. Bioactive compounds in commonly utilized legume cultivars from iraq. Journal of Microbiology, Biotechnology and Food Sciences, vol. 2, sp. no. 1, p. 2032-2042.

Das, N. P., Pereira, T. A., 1990. Effects of flavonoids on thermal autooxidation of palm oil: structure-activity relationship. Journal of the American Oil Chemists´ Society, vol. 67, no. 4, p. 255-258. https://doi.org/10.1007/BF02540652 DOI: https://doi.org/10.1007/BF02540652

Dlamini, N. R., Dykes, L., Rooney, L. W., Waniska, R. D., Taylor, J. R. N. 2009. Condensed tannins in traditional wet-cooked and modern extrusion-cooked sorghum porridges. Cereal Chemistry, vol. 86, no. 2, p. 191-196. https://doi.org/10.1094/CCHEM-86-2-0191 DOI: https://doi.org/10.1094/CCHEM-86-2-0191

Dueñas, M., Hernández, T., Estrella, I, Fernández, D. 2009. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus Angustifolius L.). Food Chemistry, vol. 117, no 4, p. 599-607. https://doi.org/10.1016/j.foodchem.2009.04.051 DOI: https://doi.org/10.1016/j.foodchem.2009.04.051

Duranti, M., Consonni, A., Magni, Ch., Sessa, F., Scarafoni, A. 2008. The major proteins of lupin seed: Characterisation and molecular properties for use as functional and nutraceutical ingredients. Trends in Food Science and Technology, vol. 19, no. 12, p. 624-633. https://doi.org/10.1016/j.tifs.2008.07.002 DOI: https://doi.org/10.1016/j.tifs.2008.07.002

Ghazal, G. M., Shahhat, I. M. A. 2013. Polyphenols, Flavonoids, Carotenoids and Antioxidant Activity of Lupine (Lupinus termis L.) Seeds Affected by Vitamin C, vitamin B3 and Turmeric Rhizomes Extract. Advances in Environmental Biology, vol. 7, no. 14, p. 4914-4924.

Gill, S. S., Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, vol. 48, no. 12, p. 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016 DOI: https://doi.org/10.1016/j.plaphy.2010.08.016

PMid:20870416

Gulewicz, P., Martinez-villaluenga, C., Frias, J., Ciesiołka, D., Gulewicz, K., Vidal-Valverde, C. 2008. Effect of germination on the protein fraction composition of different lupin seeds. Food Chemistry, vol. 107, no. 2, p. 830-844. https://doi.org/10.1016/j.foodchem.2007.08.087 DOI: https://doi.org/10.1016/j.foodchem.2007.08.087

Guo, X. Y., Wang, J., Wang, N. L., Kitanaka, S., Yao, X. S., 2007. 9,10-Dihydrophenanthrene derivatives from Pholidota yunnanensis and scavenging activity on DPPH free radical. Journal of Asian Natural Products Research, vol. 9, no. 2, p. 165-174. https://doi.org/10.1080/10286020500480522 PMid:17454314 DOI: https://doi.org/10.1080/10286020500480522

Hall, R. S., Johnson, S. K., Baxter, A. L., Ball, M. J. 2005. Lupin kernel fibre-enriched foods beneficially modify serum lipids in men. European Journal of Clinical Nutrition, vol. 59, no. 3, p. 325-33. https://doi.org/10.1038/sj.ejcn.1602077 DOI: https://doi.org/10.1038/sj.ejcn.1602077

PMid:15508014

Hwang, Y. W., Kim, S. Y., Jee, S. H., Kim, Y. N., Nam, C., M. 2009. Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. Nutrition and Cancer, vol. 61, no. 5, p. 598-606. https://doi.org/10.1080/01635580902825639 PMid:19838933 DOI: https://doi.org/10.1080/01635580902825639

Chawla, R., Patil, G. R. 2010. Comprehensive Reviews in Food Science and Food Safety. Acta Chimica Slovaca, vol. 4, no. 1, p. 95-114.

Cheng, L., Bucciarelli, B., Shen, J., Allen, D., Vance, C. P.2011. Update on white lupin cluster root acclimation to phosphorus deficiency. Plant Physiology, vol. 156, no. 3, p. 1025-1032. https://doi.org/10.1104/pp.111.175174 DOI: https://doi.org/10.1104/pp.111.175174

PMid:21464472

Chiofalo, B., Lo Presti, V., Chiofalo, V., Gresta, F. 2012. The productive traits, fatty acid profile and nutritional indices of three lupin (Lupinus spp.) species cultivated in a Mediterranean environment for the livestock. Animal Feed Science and Technology, vol. 171, p. 230-239. https://doi.org/10.1016/j.anifeedsci.2011.11.005 DOI: https://doi.org/10.1016/j.anifeedsci.2011.11.005

Jensen, E. S., Peoples, M. B., Boddey, R. M., Gresshoff, P. M., Hauggaard-Nielsen, H., Alves, B. J., Morrison, M. J. 2012. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: a review. Agronomy for Sustainable Development, vol. 32, no. 2, p. 329-364. https://doi.org/10.1007/s13593-011-0056-7 DOI: https://doi.org/10.1007/s13593-011-0056-7

Joray, M. L., Rayas-Duarte, P., Mohamed, A., Van Santen, E. 2007. Coated Lupin Bean Snacks. Journal of Food Quality, vol. 30, no. 2, p. 267-279. https://doi.org/10.1111/j.1745-4557.2007.00120.x DOI: https://doi.org/10.1111/j.1745-4557.2007.00120.x

Kedare, S. B., Singh, R. P., 2011. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, vol. 48, no. 4, p. 412-422. https://doi.org/10.1007/s13197-011-0251-1 DOI: https://doi.org/10.1007/s13197-011-0251-1

PMid:23572765

Kirmizi, S., Guleryuz, G. 2007. Monitoring Protein Mobilization During Seed Germination of Broad Bean (Vicia faba L.). Asian Journal of Plant Sciences, vol. 6, p. 374-378. DOI: https://doi.org/10.3923/ajps.2007.374.378

Kohajdová, Z., Karovičová, J., Schmidt, Š. 2011. Lupin composition and possible use in bakery a review. Czech Journal of Food Science, vol. 29, no. 3, p. 203-211. https://doi.org/10.3923/ajps.2007.374.378 DOI: https://doi.org/10.17221/252/2009-CJFS

Kurzbaum, A., Safori, G., Monir, M., Simsolo. C. 2008. Anticholinergic syndrome in response to lupin seed toxicity. Israeli Journal of Emergency Medicine, vol. 8, no. 2, p. 20-22.

Lachman, J., Proněk, D., Hejtmánková, A., Pivec, V., Faitová, K. 2003. Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Scientia Horticulturae, vol. 30, p. 142-147. DOI: https://doi.org/10.17221/3876-HORTSCI

Laudadio, V., Tufarelli, V. 2011. Dehulled-micronised lupin (Lupinus Albus L. cv. Multitalia) as the main protein source for broilers: influence on growth performance, carcass traits and meat fatty acid composition. Journal of the Science of Food and Agriculture, vol. 91, no. 11, p. 2081-2087. https://doi.org/10.1002/jsfa.4426 PMid:21520452 DOI: https://doi.org/10.1002/jsfa.4426

Lee, Y. P., Mori, T. A., Sipsas, S., Barden, A., Puddey, I. B., Burke, V., Hall, R. S., Hodgson, J. M. 2006. Lupin-enriched bread increases satiety and reduces energy intake acutely. The American Joural of Clinical Nutrition, vol. 84, no. 5, p. 975-80. PMid:17093146 DOI: https://doi.org/10.1093/ajcn/84.5.975

Martín-Cabrejas, M., Díaz, M., Aguilera, Y., Benítez, V., Mollá, E., Esteban, R. 2008. Influence of germination on the soluble carbohydrates and dietary fibre fractions in non-conventional legumes. Food Chemistry, vol. 107, no. 3, p. 1045-1052. https://doi.org/10.1016/j.foodchem.2007.09.020 DOI: https://doi.org/10.1016/j.foodchem.2007.09.020

Martínez-Villaluenga, C., Bringe, N. A., Berhow, M. A., Gonzalez de Mejia, E. 2008. Beta-conglycinin embeds active peptides that inhibit lipid accumulation in 3T3-L1 adipocytes in vitro. Journal of Agricultural and Food Chemistry, vol. 56, no. 22, p. 10533-10543. https://doi.org/10.1021/jf802216b PMid:18947234 DOI: https://doi.org/10.1021/jf802216b

Martínez-Villaluenga, C., Dia, V. P., Berhow, M., Bringe, N. A., Gonzalez de Mejia, E. 2009. Protein hydrolysates from beta-conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation in vitro. Molecular Nutrition and Food Research, vol. 53, no. 8, p. 1007-1018. https://doi.org/10.1002/mnfr.200800473 PMid:19603404 DOI: https://doi.org/10.1002/mnfr.200800473

Martínez-Villaluenga, C., Frias, J., Vidal-Valverde, C. 2006a. Functional lupin seeds (Lupinus Albus L. and Lupinus Luteus L.) after extraction of α-galactosides. Food Chemistry, vol. 98, no. 2, p. 291-299. https://doi.org/10.1016/j.foodchem.2005.05.074 DOI: https://doi.org/10.1016/j.foodchem.2005.05.074

Martínez-Villaluenga, C., Zielinski, H., Frias, J., Piskuła, M. K., Kozłowska, H., Vidal-Valverde, C. 2009. Antioxidant capacity and polyphenolic content of highprotein lupin products. Food Chemistry, vol. 112, no. 1, p. 84-88. https://doi.org/10.1016/j.foodchem.2008.05.040 DOI: https://doi.org/10.1016/j.foodchem.2008.05.040

McGonigal, A., Kapustin, J. 2008. Low glycemic index diets: should they be recommended for diabetics? The Journal for Nurse Practitioners, vol. 4, no. 9, p. 688-696. https://doi.org/10.1016/j.nurpra.2008.07.020 DOI: https://doi.org/10.1016/j.nurpra.2008.07.020

Mülayim, M., Tamkoç, A., and Babaoglu, M. 2002. Sweet white lupins versus local bitter genotype: agronomic characteristics as affected by different planting densities in the Göller region of Turkey. European Journal of Agronomy, vol. 17, no. 3, p. 181-189. https://doi.org/10.1016/S1161-0301(02)00007-2 DOI: https://doi.org/10.1016/S1161-0301(02)00007-2

Nderitu, A. M., Dykes, L., Awika, J. M., Minnaar, A., Duodu, K. G. 2013. Phenolic composition and inhibitory effect against oxidative DNA damage of cooked cowpeas as affected by simulated in vitro gastrointestinal digestion. Food Chemistry, vol. 141, no. 3, p. 1763-1771. https://doi.org/10.1016/j.foodchem.2013.05.001 PMid:23870889 DOI: https://doi.org/10.1016/j.foodchem.2013.05.001

Oomah, B. D., Tiger. N. Olson, M., Balasubramanian. P. 2006. Phenolics and antioxidative activities in narrow-leafed lupins (Lupinus Angustifolius L.). Plant Foods for Human Nutrition, vol. 61, no. 2, p. 91-97. https://doi.org/10.1007/s11130-006-0021-9 PMid:16804740 DOI: https://doi.org/10.1007/s11130-006-0021-9

Reinhard, H., Rupp, H., Sager, F., Streule, M., Zoller, O. 2006. Quinolizidine alkaloids and phomopsins in lupin seeds and lupin containing food. Journal of Chromatography A, vol. 1112, no. 1-2, p. 353-360. https://doi.org/10.1016/j.chroma.2005.11.079 PMid:16359686 DOI: https://doi.org/10.1016/j.chroma.2005.11.079

Rybarczyk, A., Amarowicz, R. 2007. Silica gel column chromatography of phenolic compounds in sweet lupin seeds extract. Bromatologia i Chemia Toksykologiczna, vol. 4, p. 375-379.

Sanchez, M. C., Altares, P., Pedrosa, M. M., Burbano, C., Cuadrado, C., Goyoaga, C., Muzquiz, M., Jimenez-Martinez, C., Davila-Ortiz, G. 2004. Alkaloid Variation During Germination in Different Lupin Species. Journal of Food Chemistry, vol. 90, no. 3, p. 347-355. https://doi.org/10.1016/j.foodchem.2004.04.008 DOI: https://doi.org/10.1016/j.foodchem.2004.04.008

Scarafoni, A., Ronchi, A., Duranti, M. 2009. A realtime PCR method for the detection and quantification of lupin flour in wheat flour-based matrices. Food Chemistry, vol. 115, no. 3, p. 1088-1093. https://doi.org/10.1016/j.foodchem.2008.12.087 DOI: https://doi.org/10.1016/j.foodchem.2008.12.087

Sebastia, V., Barbera, R., Farre. R and Lagarda, M. J. 2001. Effects of Legume Processing on Calcium, Iron and Zinc Contents and Dialysabilities. Journal of Sciences of Food and Agriculture, vol. 81, no. 12, p.1180-1185. https://doi.org/10.1002/jsfa.927 DOI: https://doi.org/10.1002/jsfa.927

Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T., 1992. Antioxidative properties of xanthone on the auto oxidation of soybean in cylcodextrin emulsion. Jourbal of Agricultural and Food Chemistry, vol. 40, p. 945-948. https://doi.org/10.1021/jf00018a005 DOI: https://doi.org/10.1021/jf00018a005

Sievenpiper, J., Kendall, C. W., Esfahani, A., Wong, J. M., Crleton, A. J., Jiang, H. Y., Bazinet, R. P., Vidgen, E., Jenkins, D. J. 2009. Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia, vol. 52, no. 8, p. 1479-1495. https://doi.org/10.1007/s00125-009-1395-7 PMid:19526214 DOI: https://doi.org/10.1007/s00125-009-1395-7

Siger, A., Czubinski, J., Kachlicki, P., Dwiecki, K., Lampart-Szczapa, E., Nogala-Kalucka, M. 2012. Antioxidant activity and phenolic content in three lupin species. Journal of Food Composition and Analysis, vol. 25, no. 2, p.190-197. https://doi.org/10.1016/j.jfca.2011.10.002 DOI: https://doi.org/10.1016/j.jfca.2011.10.002

Soares, J. R., Dins, T. C. P., Cunha, A. P., Almeida, L. M., 1997. Antioxidant activity of some extracts of Thymus zygis. Free Radical Research, vol. 26, no. 5, p. 469-478. https://doi.org/10.3109/10715769709084484 PMid:9179593 DOI: https://doi.org/10.3109/10715769709084484

Stoddard, F. L., Hovinen, S., Kontturi, M., Lindström, K., Nykänen, N. 2009. Legumes in Finnish agriculture: History, present status and future prospects. Agricultural and Food Science, vol. 18, no. 3-4, p. 191-205. https://doi.org/10.2137/145960609790059578 DOI: https://doi.org/10.2137/145960609790059578

Sujak, A., Kotlarz, A., Strobel, W. 2006. Compositional and nutritional evaluation of several lupin seeds. Food Chemistry, vol. 98, no. 4, p. 711-719. https://doi.org/10.1016/j.foodchem.2005.06.036 DOI: https://doi.org/10.1016/j.foodchem.2005.06.036

Uzun, B., Arslan, C., Karhan, M., Toker, C. 2007. Fat and fatty acids of white lupin (Lupinus Albus L.) in comparison to sesame (Sesamum indicum L.). Food Chemistry, vol. 102, no. 1, p. 45-49. https://doi.org/10.1016/j.foodchem.2006.03.059 DOI: https://doi.org/10.1016/j.foodchem.2006.03.059

Wang, S., Clements, J. 2008. Antioxidant Activities of Lupin Seeds. Lupinus for Health and Wealth, Fremantle : Westwrn Australia, Proceedings of the 12th International Lupin Conference, pp. 324-327. ISBN 0-86476- 153-8.

Xu, J. G., Tian, C. R., Hu, Q. P., Luo, J. Y., Wang, X. D., Tian, X. D. 2009. Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. Journal of Agricultural and Food Chemistry, vol. 57, no. 21, p. 10392-10398. https://doi.org/10.1021/jf902778j PMid:19827789 DOI: https://doi.org/10.1021/jf902778j

Zielinska, D., Frias, J., Piskuła, M. K., Kozlowska, H., Zielinski, H., Vidal-Valverde, C. 2008. Evaluation of the antioxidant capacity of lupin sprouts germinated in the presence of selenium. European Food Research and Technology, vol. 227, p. 1711-1720. https://doi.org/10.1007/s00217-008-0898-7 DOI: https://doi.org/10.1007/s00217-008-0898-7

Zralý, Z., B. Písaříková, B., Trčková, M., Doležal, M., Thiemel, J., Simeonovová, J., Jůzl, M. 2008. Replacement of soya in pig diets with white lupine cv. Butan. Czech. Journal of Animal Science, vol. 53, p. 418-430. DOI: https://doi.org/10.17221/353-CJAS

Zralý, Z., B. Písaříková, B., Trčková, M., Herzigl, I., Jůzl, M, Simeonová, J. 2007. The Effect of White Lupine on the Performance, Health, Carcass Characteristics and Meat Quality of Market Pigs. Veterinarní Medicina, vol. 52, no. 1, p. 29-41.

Downloads

Published

2017-01-21

How to Cite

Dalaram, I. S. (2017). Evaluation of total polyphenol content and antioxidant capacity of different verity lupin seeds. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 26–34. https://doi.org/10.5219/678