The role of color sorting machine in reducing food safety risks


  • Eleonora Kecskes-Nagy Kecskemét College Faculty of Horticulture, 6000 Kecskemét Erdei Ferenc tér 1.
  • Péter Korzenszky Szent István University, Faculty of Mechanical Engineering, Institute of Mechanics and Machinery, 2100 GödöllÅ‘ Páter K. út 1.
  • Péter Sembery Szent István University, Faculty of Mechanical Engineering, Institut of Process Engineering, Department of Measurement Technic, 2100 GödöllÅ‘ Páter K. út 1.



food safety, DON toxin, fusarium, wheat, Triticum durum


It is the very difficult problem how we can decrease food safety risks in the product, which was polluted in process of cropping. According to professional literature almost the prevention is considered as an exclusive method to keep below safe level the content of DON toxin. The source of food safety in food chain is that the primary products suit the food safety requirements. It is a very difficult or sometimes it is not possible to correct food safety risk factors - which got into the products during cultivation - in the course of processing. Such factor is fusariotoxin in fodder and bread wheat. DON toxin is the most frequent toxin in cereals. The objective of the searching was to investigate, if it is possible to decrease DON toxin content of durum wheat and to minimize the food safety risk by application milling technology with good production practice and technological conditions. The samples were taken in the first phase of milling technology just before and after color sorting. According to measuring results Sortex Z+ optical sorting decreased DON toxin content of wheat. This mean that the food safety risks can be reduced by Sortex Z+ optical sorting machine. Our experiments proved if there is color sorting in the cleaning process preceding the milling of wheat then a part of the grain of wheat infected by Fusarium sp. can be selected. This improves the food safety parameters of given lot of wheat and decrease the toxin content. The flour made from contaminated grains of wheat can be a serious food safety risk. We would like to support scientifically the technical development of milling technology with our experimental data.


Download data is not yet available.


Adam, A., Lopez, W. L., Tressol, J., Leuillet, M., Demigné, Ch., Rémésy, Ch. 2002. Impact of Whole Wheat Flour and Its Milling Fractions on the Cecal Fermentations and the Plasma and Liver Lipids in Rats, Journal of Agricurtural snd Food Chemistry, vol. 50, no. 22, p. 6557-6562.

Commission recommendation (EC) of 17 August 2006 on the prevention and reduction of Fusarium toxins in cereals and cereal products. Oj L 234, 29.8.2006, p 35-40.

Commission regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. OJ L 364, 20.12.20060, p. 5-24.

Font, G., Rodríguez-Carrasco, Y., Moltó, J. C., Berrada, H., 2013. Determination of deoxynivalenol in wheat-based snacks by gas chromatography-triple quadrupole tandem mass spectrometry. Revista de Toxicología, vol. 30, p. 198-202.

Frank, P. 2010. Technológiai kísérletek a búza fuzárium toxin szennyezettségének csökkentésére. Élelmiszer Tudomány Technológia, vol. 64, no. 2, p. 16-20.

Hrubošová, D., Vytřasová, J., Brožková, I. 2015. Production of T-2 Toxin and Deoxynivalenol in the Presence of Different Disinfectants, Potravinarstvo, vol. 9, no. 1, p. 18-23.

Kecskésné, N. E., Korzenszky, P., Sembery, P. 2015. Reduction of toxin content of Triticum durum in the milling process. Review on agriculture and rural development, vol. 4, no. 1, p. 11-16.

Kótai, Cs., Lehoczki-Krsjak, Sz., Mesterházy Á., Varga M. 2012. Kalászfuzárium és más betegségek elleni védekezés búzában, egy új megközelítés. Agro Napló, vol. 16. p. 49-54.

Leslie, F. L., Logrieco, F. A. 2014. Mycotoxin Reduction in Grain Chains. John Wiley & Sons, ISBN 978-0-8138-2083-5, p. 376.

Mesterházy, Á. 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breeding, vol. 114, no. 5, p. 377-386.

Mesterházy, A., Lehoczki-Krsjak, S., Varga, M., Szabó-Hevér, Á., Tóth, B., Lemmens, M. 2015. Breeding for FHB Resistance via Fusarium Damaged Kernels and Deoxynivalenol Accumulation as Well as Inoculation Methods in Winter Wheat. Agricultural Sciences, vol. 6, p. 970-1002.

Remža, J., Bíreš, J., Matúšová, M., Lacko-Bartošová, M., 2011. Official Controls of Foodstuffs - Contamination of Cereals by Mycotoxins of the Genus Fusarium and Ochratoxin A. Potravinarstvo, vol. 5, no. 2, p. 63-66.

Sándor, M., Győri, Z., Sípos, P. 2010. Malomipari lehetőségek értékelése az őszi búza mikotoxin szennyezettségének csökkentésében. Élelmiszer Tudomány Technológia, vol. 64, no. 2. p. 4-9.

Stanic, A., Uhlig, S., Solhaug, A., Rise, F., Wilkins L. A., Miles O. Ch. 2015. Nucleophilic Addition of Thiols to Deoxynivalenol. Journal of Agricultural and Food Chemistry, vol. 63, no. 34, p. 7556-7566. PMid:26242781

Summerell, B., Laurence, H. M., Liew, C. Y. E., Leslie F. J. 2010. Biogeography and phylogeography of Fusarium: a review. Fungal Diversity, vol. 44, no. 1, p. 3-13.

Véha, A., Szabó, P., Bartók, T., Gyimes, E. 2015. Milling technological experiments to reduce Fusarium toxin contamination in wheat, Acta Universitatis Sapientiae Alimentaria, vol. 8, no 1, p. 55-62.

Veres, E., Borbély, M. 2007. Az őszi búza felhasználhatósága a vizuális és mikrobiológiai Fusarium fertőzöttség-, valamint a toxin vizsgálatok alapján. Agrártudományi Közlemények, vol. 12, p. 26-34.




How to Cite

Kecskes-Nagy, E. ., Korzenszky, P. ., & Sembery, P. . (2016). The role of color sorting machine in reducing food safety risks. Potravinarstvo Slovak Journal of Food Sciences, 10(1), 354–358.