The influence of different methods of decontamination of microbial biofilms formed on eggshells

Authors

  • Mykola Kukhtyn Ternopil Ivan Pului National Technical University, Faculty of Engineering of Machines, Structures and Technologies, Department of Food Biotechnology and Chemistry, Ruska, 56, 46001, Ternopil, Ukraine, Tel.: +380972392057 https://orcid.org/0000-0002-0195-0767
  • Zhanna Sverhun Podillia State University, Faculty of Veterinary Medicine and Technologies in Livestock, Department of Veterinary Obstetrics, Internal Pathology and Surgery, Schevchenko, 12, 32301, Kamianets-Podilskyi, Ukraine, Tel.: +380677343101
  • Yulia Horiuk Podillia State University, Faculty of Veterinary Medicine and Technologies in Livestock, Department of Veterinary Obstetrics, Internal Pathology and Surgery, Schevchenko, 12, 32301, Kamianets-Podilskyi, Ukraine, Tel.: +380976617964 https://orcid.org/0000-0002-7162-8992
  • Volodymyr Salata Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj, Faculty of Veterinary Hygiene, Ecology and Law, Department of Veterinary-Sanitary Inspection, Pekarska, 50, 79010, Lviv, Ukraine, Tel.: +380677288933 https://orcid.org/0000-0002-7175-493X
  • Svitlana Laiter-Moskaliuk Podillia State University, Faculty of Veterinary Medicine and Technologies in Livestock, Department of Animal Hygiene and Veterinary Support of the Cynological Service of the National Police of Ukraine, Schevchenko, 12, 32301, Kamianets-Podilskyi, Ukraine, Tel.: +380974756864
  • Mykhailo Mocherniuk Podillia State University, Faculty of Veterinary Medicine and Technologies in Livestock, Department of Veterinary Obstetrics, Internal Pathology and Surgery, Schevchenko, 12, 32301, Kamianets-Podilskyi, Ukraine, Tel.: +380677954711
  • Larysa Kladnytska National University of Life and Environmental Sciences of Ukraine, FacultyVeterinary medicine, Department of Biochemistry and Physiology of Animals, Potechina Str., 16, 03127, Kyiv, Ukraine, Tel.: + 380631866233 https://orcid.org/0000-0002-9360-0587
  • Victor Horiuk Podillia State University, Faculty of Veterinary Medicine and Technologies in Livestock, Department of Veterinary Obstetrics, Internal Pathology and Surgery, Schevchenko, 12, 32301, Kamianets-Podilskyi, Ukraine, Tel.: +380679300964

DOI:

https://doi.org/10.5219/1981

Keywords:

chicken egg, disinfection, biofilm, eggshell microbiota, planktonic bacteria

Abstract

According to "food legislation" requirements, all eggs entering the production of egg products must be disinfected. Therefore, developing technologies for decontaminating chicken eggs before use for food purposes is a promising work direction in chicken egg production and storage. This research aimed to identify the microbiota of chicken eggs with varying degrees of shell contamination and determine the influence of different methods of decontaminating microbial biofilms formed on eggshells. It was set up that the quantitative content of microorganisms on the surface of chicken eggs ranged from 103 CFU to 106 CFU/ml of washing and depended on the contamination of the shell with droppings. Lactobacillus spp., Bacillus spp., Corynebacterium, Staphylococcus were among the genera of bacteria that prevailed on the clean chicken shell, which were isolated in 30-50% of cases, and gram-negative microbiota was practically absent. The constant release of gram-positive bacteria is noted on the contaminated eggshell, and the frequency of identification of gram-negative microbiota of the Enterobacteriaceae genus and non-fermenting genera Pseudomonas and Psychrobacter increases. That is, the microbial scape of the microbiota of the chicken shell depends on its cleanliness, and the presence of a dirty surface increases the frequency of allocation of the resident microflora of the gastrointestinal tract. It was found that the working solution of the disinfectant Vircon S destroyed planktonic bacteria applied to the eggshell in an average of 2 minutes of exposure, stabilised water ozone for 1 minute, gaseous ozone for 3 minutes, and the action of ultraviolet rays with a length of 253.7 nm for 25-30 min. At the same time, using these disinfection methods on bacteria formed in a biofilm on the eggshell did not cause a bactericidal action during this time. To significantly reduce bacteria in the biofilm using these methods, it is necessary to increase the exposure time of the biocide by 2-3 times. Therefore, the complex structure of the eggshell and the multi-layered matrix of biofilms provide better protection for bacteria against the influence of the investigated disinfection methods.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Park, J. H., Kang, M. S., Park, K. M., Lee, H. Y., Ok, G. S., Koo, M. S., Hong, S. I., & Kim, H. J. (2020). A dynamic predictive model for the growth of Salmonella spp. and Staphylococcus aureus in fresh egg yolk and scenario-based risk estimation. In Food Control (Vol. 118, p. 107421). Elsevier BV. https://doi.org/10.1016/j.foodcont.2020.107421 DOI: https://doi.org/10.1016/j.foodcont.2020.107421

Wilson, P. B. (2017). Recent advances in avian egg science: A review. In Poultry Science (Vol. 96, Issue 10, pp. 3747–3754). Elsevier BV. https://doi.org/10.3382/ps/pex187 DOI: https://doi.org/10.3382/ps/pex187

Tian, L., Hu, S., Jia, J., Tan, W., Yang, L., Zhang, Q., Liu, X., & Duan, X. (2021). Effects of short-term fermentation with lactic acid bacteria on the characterization, rheological and emulsifying properties of egg yolk. In Food Chemistry (Vol. 341, p. 128163). Elsevier BV. https://doi.org/10.1016/j.foodchem.2020.128163 DOI: https://doi.org/10.1016/j.foodchem.2020.128163

Olsen, R., Kudirkiene, E., Thøfner, I., Pors, S., Karlskov-Mortensen, P., Li, L., Papasolomontos, S., Angastiniotou, C., & Christensen, J. (2017). Impact of egg disinfection of hatching eggs on the eggshell microbiome and bacterial load. In Poultry Science (Vol. 96, Issue 11, pp. 3901–3911). Elsevier BV. https://doi.org/10.3382/ps/pex182 DOI: https://doi.org/10.3382/ps/pex182

Lin, C.-M., Chen, S.-Y., Lin, Y.-T., Hsiao, C.-P., Liu, C.-T., Hazeena, S. H., Wu, J.-S., & Hou, C.-Y. (2023). Inactivating Salmonella Enteritidis on shell eggs by using ozone microbubble water. In International Journal of Food Microbiology (Vol. 398, p. 110213). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2023.110213 DOI: https://doi.org/10.1016/j.ijfoodmicro.2023.110213

Sharaf Eddin, A., Ibrahim, S. A., & Tahergorabi, R. (2019). Egg quality and safety with an overview of edible coating application for egg preservation. In Food Chemistry (Vol. 296, pp. 29–39). Elsevier BV. https://doi.org/10.1016/j.foodchem.2019.05.182 DOI: https://doi.org/10.1016/j.foodchem.2019.05.182

De Reu, K., Grijspeerdt, K., Herman, L., Heyndrickx, M., Uyttendaele, M., Debevere, J., Putirulan, F. F., & Bolder, N. M. (2006). The effect of a commercial UV disinfection system on the bacterial load of shell eggs. In Letters in Applied Microbiology (Vol. 42, Issue 2, pp. 144–148). Oxford University Press (OUP). https://doi.org/10.1111/j.1472-765x.2005.01825.x DOI: https://doi.org/10.1111/j.1472-765X.2005.01825.x

Sharif, M. K., Saleem, M., & Javed, K. (2018). Food Materials Science in Egg Powder Industry. In Role of Materials Science in Food Bioengineering (pp. 505–537). Elsevier. https://doi.org/10.1016/b978-0-12-811448-3.00015-2 DOI: https://doi.org/10.1016/B978-0-12-811448-3.00015-2

Kim, H.-J., Yong, H. I., Jayasena, D. D., Lee, H. J., Lee, H., & Jo, C. (2016). Microbial safety and physicochemical characteristics of electron beam irradiated whole egg powder. In Food Science and Biotechnology (Vol. 25, Issue 2, pp. 637–642). Springer Science and Business Media LLC. https://doi.org/10.1007/s10068-016-0089-4 DOI: https://doi.org/10.1007/s10068-016-0089-4

Baron, F., Jan, S., & Techer, C. (2023). Microbiology of Egg and Egg Products. In Handbook of Egg Science and Technology (pp. 355–396). CRC Press. https://doi.org/10.1201/9781003254430-26 DOI: https://doi.org/10.1201/9781003254430-26

Kouam, M. K., Biekop, M. H. F., Katte, B., & Teguia, A. (2018). Salmonella status of table eggs in commercial layer farms in Menoua Division, West region of Cameroon. In Food Control (Vol. 85, pp. 345–349). Elsevier BV. https://doi.org/10.1016/j.foodcont.2017.09.037 DOI: https://doi.org/10.1016/j.foodcont.2017.09.037

Wan, Z., Chen, Y., Pankaj, S. K., & Keener, K. M. (2017). High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella Enteritidis contamination on egg shell. In LWT - Food Science and Technology (Vol. 76, pp. 124–130). Elsevier BV. https://doi.org/10.1016/j.lwt.2016.10.051 DOI: https://doi.org/10.1016/j.lwt.2016.10.051

Holt, P. S., Davies, R. H., Dewulf, J., Gast, R. K., Huwe, J. K., Jones, D. R., Waltman, D., & Willian, K. R. (2011). The impact of different housing systems on egg safety and quality. In Poultry Science (Vol. 90, Issue 1, pp. 251–262). Elsevier BV. https://doi.org/10.3382/ps.2010-00794 DOI: https://doi.org/10.3382/ps.2010-00794

De Reu, K., Grijspeerdt, K., Heyndrickx, M., Zoons, J., De Baere, K., Uyttendaele, M., Debevere, J., & Herman, L. (2005). Bacterial eggshell contamination in conventional cages, furnished cages and aviary housing systems for laying hens. In British Poultry Science (Vol. 46, Issue 2, pp. 149–155). Informa UK Limited. https://doi.org/10.1080/00071660500065359 DOI: https://doi.org/10.1080/00071660500065359

Galvão, J. A., Biondo, A. W., Possebon, F. S., Spina, T. L. B., Correia, L. B. N., Zuim, C. V., Guerra Filho, J. B. P., Pantoja, J. C. F., & Pinto, J. P. D. A. N. (2018). Microbiological vulnerability of eggs and environmental conditions in conventional and free-range housing systems. In Semina: Ciências Agrárias (Vol. 39, Issue 1, p. 133). Universidade Estadual de Londrina. https://doi.org/10.5433/1679-0359.2018v39n1p133 DOI: https://doi.org/10.5433/1679-0359.2018v39n1p133

Jones, D. R., Cox, N. A., Guard, J., Fedorka-Cray, P. J., Buhr, R. J., Gast, R. K., Abdo, Z., Rigsby, L. L., Plumblee, J. R., Karcher, D. M., Robison, C. I., Blatchford, R. A., & Makagon, M. M. (2015). Microbiological impact of three commercial laying hen housing systems. In Poultry Science (Vol. 94, Issue 3, pp. 544–551). Elsevier BV. https://doi.org/10.3382/ps/peu010 DOI: https://doi.org/10.3382/ps/peu010

Zeweil, H. S., Rizk, R. E., Bekhet, G. M., & Ahmed, M. R. (2015). Comparing the effectiveness of egg disinfectants against bacteria and mitotic indices of developing chick embryos. In The Journal of Basic & Applied Zoology (Vol. 70, pp. 1–15). Elsevier BV. https://doi.org/10.1016/j.jobaz.2014.12.005 DOI: https://doi.org/10.1016/j.jobaz.2014.12.005

Mohammadi-Aragh, M. K., Linhoss, J. E., & Evans, J. D. (2022). Effects of various disinfectants on the bacterial load and microbiome of broiler hatching eggs using electrostatic spray. In Journal of Applied Poultry Research (Vol. 31, Issue 3, p. 100278). Elsevier BV. https://doi.org/10.1016/j.japr.2022.100278 DOI: https://doi.org/10.1016/j.japr.2022.100278

Al-Ajeeli, M. N., Taylor, T. M., Alvarado, C. Z., & Coufal, C. D. (2016). Comparison of eggshell surface sanitization technologies and impacts on consumer acceptability. In Poultry Science (Vol. 95, Issue 5, pp. 1191–1197). Elsevier BV. https://doi.org/10.3382/ps/pew014 DOI: https://doi.org/10.3382/ps/pew014

Carson, R. T., Larson, E., Levy, S. B., Marshall, B. M., & Aiello, A. E. (2008). Use of antibacterial consumer products containing quaternary ammonium compounds and drug resistance in the community. In Journal of Antimicrobial Chemotherapy (Vol. 62, Issue 5, pp. 1160–1162). Oxford University Press (OUP). https://doi.org/10.1093/jac/dkn332 DOI: https://doi.org/10.1093/jac/dkn332

Cook, M. I., Beissinger, S. R., Toranzos, G. A., & Arendt, W. J. (2005). Incubation reduces microbial growth on eggshells and the opportunity for trans‐shell infection. In Ecology Letters (Vol. 8, Issue 5, pp. 532–537). Wiley. https://doi.org/10.1111/j.1461-0248.2005.00748.x DOI: https://doi.org/10.1111/j.1461-0248.2005.00748.x

Baron, F., & Jan, S. (2011). Egg and egg product microbiology. In Improving the Safety and Quality of Eggs and Egg Products (pp. 330–350). Elsevier. https://doi.org/10.1533/9780857093912.3.330 DOI: https://doi.org/10.1533/9780857093912.3.330

Garkavenko, T. O., Gorbatyuk, O. I., Dybkova, S. M., Kozytska, T. G., Andriiashchuk, V. O., Kukhtyn, M. D., & Horiuk, Y. V. (2021). Screening of Epidemiologically Significant Mechanisms of Antibiotics to β-Lactams in Enterobacteriaceae - Pathogens of Zoonoses. In Journal of Pure and Applied Microbiology (Vol. 15, Issue 3, pp. 1245–1256). Journal of Pure and Applied Microbiology. https://doi.org/10.22207/jpam.15.3.14 DOI: https://doi.org/10.22207/JPAM.15.3.14

Jiang, W., Etienne, X., Li, K., & Shen, C. (2018). Comparison of the Efficacy of Electrostatic versus Conventional Sprayer with Commercial Antimicrobials To Inactivate Salmonella, Listeria monocytogenes, and Campylobacter jejuni for Eggs and Economic Feasibility Analysis. In Journal of Food Protection (Vol. 81, Issue 11, pp. 1864–1870). Elsevier BV. https://doi.org/10.4315/0362-028x.jfp-18-249 DOI: https://doi.org/10.4315/0362-028X.JFP-18-249

Kukhtyn, M., Kozhyn, V., Horiuk, V., Malimon, Z., Horiuk, Y., Yashchuk, T., & Kernychnyi, S. (2021). Dezenfektan Biyositler ve Proteaz ve Amilaz Enzimlerinin Biyofilmlerdeki Bakteriler Üzerine Aktivitesi. In Kafkas Universitesi Veteriner Fakultesi Dergisi. Kafkas University. https://doi.org/10.9775/kvfd.2021.25770 DOI: https://doi.org/10.9775/kvfd.2021.25770

Bi, X., Wang, X., Chen, Y., Chen, L., Xing, Y., & Che, Z. (2020). Effects of combination treatments of lysozyme and high power ultrasound on the Salmonella typhimurium inactivation and quality of liquid whole egg. In Ultrasonics Sonochemistry (Vol. 60, p. 104763). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2019.104763 DOI: https://doi.org/10.1016/j.ultsonch.2019.104763

Rodriguez-Romo, L. A., & Yousef, A. E. (2005). Inactivation of Salmonella enterica Serovar Enteritidis on Shell Eggs by Ozone and UV Radiation. In Journal of Food Protection (Vol. 68, Issue 4, pp. 711–717). Elsevier BV. https://doi.org/10.4315/0362-028x-68.4.711 DOI: https://doi.org/10.4315/0362-028X-68.4.711

Braun, S., Achermann, B., De Marco, A., Pleijel, H., Karlsson, P. E., Rihm, B., Schindler, C., & Paoletti, E. (2017). Epidemiological analysis of ozone and nitrogen impacts on vegetation – Critical evaluation and recommendations. In Science of The Total Environment (Vols. 603–604, pp. 785–792). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2017.02.225 DOI: https://doi.org/10.1016/j.scitotenv.2017.02.225

Hou, C.-Y., Lai, Y.-C., Hsiao, C.-P., Chen, S.-Y., Liu, C.-T., Wu, J.-S., & Lin, C.-M. (2021). Antibacterial activity and the physicochemical characteristics of plasma activated water on tomato surfaces. In LWT (Vol. 149, p. 111879). Elsevier BV. https://doi.org/10.1016/j.lwt.2021.111879 DOI: https://doi.org/10.1016/j.lwt.2021.111879

Lin, C.-M., Hsiao, C.-P., Lin, H.-S., Liou, J. S., Hsieh, C.-W., Wu, J.-S., & Hou, C.-Y. (2020). The Antibacterial Efficacy and Mechanism of Plasma-Activated Water Against Salmonella Enteritidis (ATCC 13076) on Shell Eggs. In Foods (Vol. 9, Issue 10, p. 1491). MDPI AG. https://doi.org/10.3390/foods9101491 DOI: https://doi.org/10.3390/foods9101491

Mocherniuk, M. M., Kukhtyn, M. D., Horiuk, Y. V., Horiuk, V. V., Tsvigun, O. A., & Tokarchuk, T. S. (2022). Microflora of boxes for holding veterinary patients in clinics. In Regulatory Mechanisms in Biosystems (Vol. 13, Issue 3, pp. 257–264). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/022233 DOI: https://doi.org/10.15421/022233

Korowiecka, K., Trela, M., Tombarkiewicz, B., Pawlak, K., Niedziółka, J. W., Swadźba, M., & Lis, M. W. (2017). Assessment of the effect of selected substances used for disinfection of hatching eggs on hatching results in chickens. In Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego (Vol. 13, Issue 2, pp. 25–35). Index Copernicus. https://doi.org/10.5604/01.3001.0013.5221 DOI: https://doi.org/10.5604/01.3001.0013.5221

Motola, G., Hafez, H. M., & Brüggemann-Schwarze, S. (2023). Assessment of three alternative methods for bacterial disinfection of hatching eggs in comparison with conventional approach in commercial broiler hatcheries. In S. El-Ashram (Ed.), PLOS ONE (Vol. 18, Issue 3, p. e0283699). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0283699 DOI: https://doi.org/10.1371/journal.pone.0283699

Liu, C., Zheng, W., Li, Z., Zhou, L., Sun, Y., & Han, S. (2022). Slightly acidic electrolyzed water as an alternative disinfection technique for hatching eggs. In Poultry Science (Vol. 101, Issue 3, p. 101643). Elsevier BV. https://doi.org/10.1016/j.psj.2021.101643 DOI: https://doi.org/10.1016/j.psj.2021.101643

De Reu, K., Rodenburg, T. B., Grijspeerdt, K., Messens, W., Heyndrickx, M., Tuyttens, F. A. M., Sonck, B., Zoons, J., & Herman, L. (2009). Bacteriological contamination, dirt, and cracks of eggshells in furnished cages and noncage systems for laying hens: An international on-farm comparison. In Poultry Science (Vol. 88, Issue 11, pp. 2442–2448). Elsevier BV. https://doi.org/10.3382/ps.2009-00097 DOI: https://doi.org/10.3382/ps.2009-00097

Rodríguez-Navarro, A. B., Marie, P., Nys, Y., Hincke, M. T., & Gautron, J. (2015). Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification. In Journal of Structural Biology (Vol. 190, Issue 3, pp. 291–303). Elsevier BV. https://doi.org/10.1016/j.jsb.2015.04.014 DOI: https://doi.org/10.1016/j.jsb.2015.04.014

Samiullah, Roberts, J. R., & Chousalkar, K. K. (2014). Effect of production system and flock age on egg quality and total bacterial load in commercial laying hens. In Journal of Applied Poultry Research (Vol. 23, Issue 1, pp. 59–70). Elsevier BV. https://doi.org/10.3382/japr.2013-00805 DOI: https://doi.org/10.3382/japr.2013-00805

Petrovič, J., Mellen, M., Čmiková, N., Schwarzová, M., & Kačániová, M. (2024). Effects of laying hens housing system on eggs microbial contamination. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 18, pp. 50–65). HACCP Consulting. https://doi.org/10.5219/1938 DOI: https://doi.org/10.5219/1938

Hudson, L. K., Harrison, M. A., Berrang, M. E., & Jones, D. R. (2016). Alternative Antimicrobial Commercial Egg Washing Procedures. In Journal of Food Protection (Vol. 79, Issue 7, pp. 1216–1220). Elsevier BV. https://doi.org/10.4315/0362-028x.jfp-15-423 DOI: https://doi.org/10.4315/0362-028X.JFP-15-423

Chan, H. Y., Meor Hussin, A. S., Ahmad, N. H., Rukayadi, Y., & Farouk, A.-E. (2021). Effectiveness of Quaternary Ammonium in Reducing Microbial Load on Eggs. In Molecules (Vol. 26, Issue 17, p. 5259). MDPI AG. https://doi.org/10.3390/molecules26175259 DOI: https://doi.org/10.3390/molecules26175259

James, C., Lechevalier, V., & Ketteringham, L. (2002). Surface pasteurisation of shell eggs. In Journal of Food Engineering (Vol. 53, Issue 2, pp. 193–197). Elsevier BV. https://doi.org/10.1016/s0260-8774(01)00156-x DOI: https://doi.org/10.1016/S0260-8774(01)00156-X

Patterson, J., & Burkholder, K. (2003). Application of prebiotics and probiotics in poultry production. In Poultry Science (Vol. 82, Issue 4, pp. 627–631). Elsevier BV. https://doi.org/10.1093/ps/82.4.627 DOI: https://doi.org/10.1093/ps/82.4.627

Riley, M. A., & Chavan, M. A. (Eds.). (2007). Bacteriocins. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-36604-1 DOI: https://doi.org/10.1007/978-3-540-36604-1

Pasquali, F., Fabbri, A., Cevoli, C., Manfreda, G., & Franchini, A. (2010). Hot air treatment for surface decontamination of table eggs. In Food Control (Vol. 21, Issue 4, pp. 431–435). Elsevier BV. https://doi.org/10.1016/j.foodcont.2009.07.003 DOI: https://doi.org/10.1016/j.foodcont.2009.07.003

Holck, A. L., Liland, K. H., Drømtorp, S. M., Carlehög, M., & McLeod, A. (2018). Comparison of UV-C and Pulsed UV Light Treatments for Reduction of Salmonella, Listeria monocytogenes, and Enterohemorrhagic Escherichia coli on Eggs. In Journal of Food Protection (Vol. 81, Issue 1, pp. 6–16). Elsevier BV. https://doi.org/10.4315/0362-028x.jfp-17-128 DOI: https://doi.org/10.4315/0362-028X.JFP-17-128

Turtoi, M., & Borda, D. (2014). Decontamination of egg shells using ultraviolet light treatment. In World’s Poultry Science Journal (Vol. 70, Issue 2, pp. 265–278). Informa UK Limited. https://doi.org/10.1017/s0043933914000282 DOI: https://doi.org/10.1017/S0043933914000282

Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. In Trends in Microbiology (Vol. 28, Issue 8, pp. 668–681). Elsevier BV. https://doi.org/10.1016/j.tim.2020.03.016 DOI: https://doi.org/10.1016/j.tim.2020.03.016

Flemming, H.-C., van Hullebusch, E. D., Neu, T. R., Nielsen, P. H., Seviour, T., Stoodley, P., Wingender, J., & Wuertz, S. (2022). The biofilm matrix: multitasking in a shared space. In Nature Reviews Microbiology (Vol. 21, Issue 2, pp. 70–86). Springer Science and Business Media LLC. https://doi.org/10.1038/s41579-022-00791-0 DOI: https://doi.org/10.1038/s41579-022-00791-0

Solomon, S. E. (2010). The eggshell: strength, structure and function. In British Poultry Science (Vol. 51, Issue sup1, pp. 52–59). Informa UK Limited. https://doi.org/10.1080/00071668.2010.497296 DOI: https://doi.org/10.1080/00071668.2010.497296

Ashrafudoulla, Md., Kim, H. J., Her, E., Shaila, S., Park, S. H., & Ha, S.-D. (2023). Characterization of Salmonella Thompson-specific bacteriophages and their preventive application against Salmonella Thompson biofilm on eggshell as a promising antimicrobial agent in the food industry. In Food Control (Vol. 154, p. 110008). Elsevier BV. https://doi.org/10.1016/j.foodcont.2023.110008 DOI: https://doi.org/10.1016/j.foodcont.2023.110008

Jung, S., Park, S. Y., Kim, S. E., Kang, I., Park, J., Lee, J., Kim, C., Chung, M., & Ha, S. (2017). Bactericidal Effect of Calcium Oxide (Scallop‐Shell Powder) Against Pseudomonas aeruginosa Biofilm on Quail Egg Shell, Stainless Steel, Plastic, and Rubber. In Journal of Food Science (Vol. 82, Issue 7, pp. 1682–1687). Wiley. https://doi.org/10.1111/1750-3841.13753 DOI: https://doi.org/10.1111/1750-3841.13753

Pande, V. V., McWhorter, A. R., & Chousalkar, K. K. (2016). Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces. In Biofouling (Vol. 32, Issue 7, pp. 699–710). Informa UK Limited. https://doi.org/10.1080/08927014.2016.1191068 DOI: https://doi.org/10.1080/08927014.2016.1191068

Tessema, K., Bedu, H., Ejo, M., & Hiko, A. (2017). Prevalence and Antibiotic Resistance of Salmonella Species Isolated from Chicken Eggs by Standard Bacteriological Method. In Journal of Veterinary Science & Technology (Vol. 08, Issue 01). OMICS Publishing Group. https://doi.org/10.4172/2157-7579.1000421 DOI: https://doi.org/10.4172/2157-7579.1000421

Kapena, M. S., Muma, J. B., Mubita, C. M., & Munyeme, M. (2020). Antimicrobial resistance of Escherichia coli and Salmonella in raw retail table eggs in Lusaka, Zambia. In November-2020 (Vol. 13, Issue 11, pp. 2528–2533). Veterinary World. https://doi.org/10.14202/vetworld.2020.2528-2533 DOI: https://doi.org/10.14202/vetworld.2020.2528-2533

Fernández Márquez, M. L., Burgos, M. J. G., Pulido, R. P., Gálvez, A., & López, R. L. (2017). Biocide Tolerance and Antibiotic Resistance in Salmonella Isolates from Hen Eggshells. In Foodborne Pathogens and Disease (Vol. 14, Issue 2, pp. 89–95). Mary Ann Liebert Inc. https://doi.org/10.1089/fpd.2016.2182 DOI: https://doi.org/10.1089/fpd.2016.2182

Jain, A. KR., & Yadav, R. (2017). Study of antibiotic resistance in bacteria Isolated from table egg. In International Journal of pharma and Bio Science (Vol. 8, Issue 1). International Journal of Pharma and Bio Sciences. https://doi.org/10.22376/ijpbs.2017.8.1.b668-674 DOI: https://doi.org/10.22376/ijpbs.2017.8.1.b668-674

Cruz-Facundo, I., Adame-Gómez, R., Vences-Velázquez, A., Rodríguez-Bataz, E., Muñoz-Barrios, S., Pérez-Oláis, J., & Ramírez-Peralta, A. (2022). Bacillus Cereus in Eggshell: Enterotoxigenic Profiles and Biofilm Production. In Brazilian Journal of Poultry Science (Vol. 24, Issue 2). FapUNIFESP (SciELO). https://doi.org/10.1590/1806-9061-2021-1535 DOI: https://doi.org/10.1590/1806-9061-2021-1535

Hincke, M., T. (2012). The eggshell: structure, composition and mineralization. In Frontiers in Bioscience (Vol. 17, Issue 1, p. 1266). IMR Press. https://doi.org/10.2741/3985 DOI: https://doi.org/10.2741/3985

de Carvalho, C. C. C. R. (2017). Biofilms: Microbial Strategies for Surviving UV Exposure. In Advances in Experimental Medicine and Biology (pp. 233–239). Springer International Publishing. https://doi.org/10.1007/978-3-319-56017-5_19 DOI: https://doi.org/10.1007/978-3-319-56017-5_19

Downloads

Published

2024-07-16

How to Cite

Kukhtyn, M., Sverhun, Z., Horiuk, Y., Salata, V., Laiter-Moskaliuk, S., Mocherniuk, M., Kladnytska, L., & Horiuk, V. (2024). The influence of different methods of decontamination of microbial biofilms formed on eggshells. Potravinarstvo Slovak Journal of Food Sciences, 18, 666–682. https://doi.org/10.5219/1981

Most read articles by the same author(s)